Answer:
![\hat p = \frac{0.244+0.326}{2}=0.285](https://tex.z-dn.net/?f=%5Chat%20p%20%3D%20%5Cfrac%7B0.244%2B0.326%7D%7B2%7D%3D0.285)
![ME = \frac{0.326-0.244}{2}=0.041](https://tex.z-dn.net/?f=%20ME%20%3D%20%5Cfrac%7B0.326-0.244%7D%7B2%7D%3D0.041)
![0.285 \pm 0.041](https://tex.z-dn.net/?f=%200.285%20%5Cpm%200.041)
Step-by-step explanation:
For this case we have a confidence interval given as a percent:
![24.4\% \leq p \leq 32.6\%](https://tex.z-dn.net/?f=%2024.4%5C%25%20%5Cleq%20p%20%5Cleq%2032.6%5C%25)
If we express this in terms of fraction we have this:
![0.244 \leq p \leq 0.326](https://tex.z-dn.net/?f=%200.244%20%5Cleq%20p%20%5Cleq%200.326%20)
We know that the confidence interval for the true proportion is given by:
![\hat p \pm z_{\alpha/2} \sqrt{\frac{\hat p(1-\hat p)}{n}}](https://tex.z-dn.net/?f=%5Chat%20p%20%5Cpm%20z_%7B%5Calpha%2F2%7D%20%5Csqrt%7B%5Cfrac%7B%5Chat%20p%281-%5Chat%20p%29%7D%7Bn%7D%7D)
And thats equivalent to:
![\hat p \pm ME](https://tex.z-dn.net/?f=%5Chat%20p%20%5Cpm%20ME)
We can estimate the estimated proportion like this:
![\hat p = \frac{0.244+0.326}{2}=0.285](https://tex.z-dn.net/?f=%5Chat%20p%20%3D%20%5Cfrac%7B0.244%2B0.326%7D%7B2%7D%3D0.285)
And the margin of error can be estimaed using the fact that the confidence interval is symmetrical
![ME = \frac{0.326-0.244}{2}=0.041](https://tex.z-dn.net/?f=%20ME%20%3D%20%5Cfrac%7B0.326-0.244%7D%7B2%7D%3D0.041)
And then the confidence interval in the form desired is:
![0.285 \pm 0.041](https://tex.z-dn.net/?f=%200.285%20%5Cpm%200.041)