It’s is m2 +11m-11
I believe that’s right
Parsecs or abbreviated pc
In chemistry, there is a common note that says, "Like dissolves like".
This pertains to the concept that polar substances can dissolve only other polar substances. Also, nonpolar substances are also only able to dissolve nonpolar substances.
Polarity of the substance depends primarily on the type of bond and the difference in electronegativity.
Water is a polar substance while vegetable oil is not. From the concept presented above, it may be concluded that water will not be able to dissolve the vegetable oil and the assumption is logical.
The answer is 7.33 g.
<span>To calculate this, we will use the the ideal gas law:
PV = nRT
where
P - pressure of the gas,
V - volume of the gas,
n - amount of substance of gas,
R - gas constant,
T - temperature of the gas.</span>
Since the amount of substance of gas (n) can be expressed as mass (m) divided by molar mass (M), then:
PV = RTm/M
It is given:
P = 0.98 atm
V = 10.2 l
T = 26°C = 299.15 K
R = 0.082 l atm/Kmol (gas constant)
M (H2O) = 2Ar(H) + Ar(O) = 2*1 + 16 = 2 + 16 = 18g
m = ?
Since PV = RTm/M, then:
m = PVM/RT
m = 0.98 · 10.2 · 18 / 0.082 · 299.15 = 179.928/24.5303 = 7.33 g
Answer:
5000 and
indicate that there is more B than A at equilibrium
Explanation:
For the given reaction: ![K=\frac{[B]}{[A]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D)
where [B] and [A] represents equilibrium concentration B and A respectively. K represents equilibrium constant
More B than A at equilibrium means, [B] > [A]
So, ![K=\frac{[B]}{[A]}>1](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D%3E1)
As, both 5000 and
are greater than 1 therefore these two K values indicate that there is more B than A at equilibrium