Answer:
A polar molecule has both a partial positive and a partial negative. Since NaCl (sodium chloride) is made out of Na+ and Cl- ions, the positive and negative parts of the water will pull on these ions individually since positive attracts negative and negative attracts positive. This magnetic force causes the Na+ and the Cl- ions to be pulled apart.
Explanation:
Answer:
<h2>93.02 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>93.02 moles</h3>
Hope this helps you
Answer:
The given statement - The main criterion for sigma bond formation is that the two bonded atoms have valence orbitals with lobes that point directly at each other along the line between the two nuclei , is <u>True.</u>
Explanation:
The above statement is correct , because the sigma bond is produced by the head on overlapping, the orbitals should all point in the same direction.
<u>SIGMA BONDS -</u> Sigma bonds (bonds) are the strongest type of covalent chemical bond in chemistry. They're made up of atomic orbitals that collide head-on. For diatomic molecules, sigma bonding is best characterized using the language and tools of symmetry groups.
Head-on overlapping of atomic orbitals produces sigma bonds. The concept of sigma bonding is expanded to include bonding interactions where a single lobe of one orbital overlaps with a single lobe of another. Propane, for example, is made up of ten sigma bonds, one for each of the two CC bonds and one for each of the eight CH bonds.
Hence , the answer is true .
This question is asking for an element with 5 valence electrons. Just go to the row it is in (excluding transition metals) and count over.
The answer would be c. P
Answer:
This is an oxidation-reduction (redox) reaction:
2 Ni0 - 4 e- → 2 NiII
(oxidation)
2 O0 + 4 e- → 2 O-II
(reduction)
Ni is a reducing agent, O2 is an oxidizing agent.