Answer:
Mass of NaBr produced = 23.67 g
Explanation:
Given data:
Mass of AgBr = 42.7 g
Mass of NaBr produced = ?
Solution:
Chemical equation:
2Na₂S₂O₃ + AgBr → NaBr + Na₃(Ag(S₂O₃)₂
Number of moles of AgBr:
Number of moles = mass/molar mass
Number of moles = 42.7 g/ 187.7 g/mol
Number of moles = 0.23 mol
now we will compare the moles of AgBr with NaBr.
AgBr : NaBr
1 : 1
0.23 : 0.23
Mass of NaBr:
Mass = number of moles × molar mass
Mass = 0.23 mol × 102.89 g/mol
Mass = 23.67 g
Answer:
Total pressure at equilibrium is 0.2798atm.
Explanation:
For the reaction:
H₂S(g) ⇄ H₂(g) + S(g)
Kp is defined as:

If initial pressure of H₂S is 0.150 atm, equilibrium pressures are:
H₂S(g): 0.150atm - x
H₂(g): x
S(g): x
Replacing in Kp:

X² = 0.1251 - 0.834X
X² + 0.834X - 0.1251 = 0
Solving for X:
X = -0.964 → False solution: There is no negative pressures
X = 0.1298
Thus, pressures are:
H₂S(g): 0.150atm - 0.1298atm = <em>0.0202atm</em>
H₂(g): <em>0.1298atm</em>
S(g): <em>0.1298atm</em>
Thus, total pressure in the container at equilibrium is:
0.0202atm + 0.1298atm + 0.1298atm = <em>0.2798atm</em>
Answer: E
How much NH₃ can be produced from the reaction below:
N₂ + 3H₂ - 2NH₃
The stoichiometric ratio of the reactants = 1:3
Given
74.2g of N₂, and Molar mass = 14g/mole
Mole of N₂ = 74.2/14=5.3mols of N₂,
and 14mols of H₂
From this given values and comparing with the stoichiometric ratio, H₂ will be the limiting reagent while N₂ is the excess reactant.
i.e, for every 14mols of H₂, we need 4.67mols of N₂ to react with it to produce 9.33mols of NH₃ as shown (vice versa)
From this we have 9.33mols of NH₃ produced
Avogadro constant, we have n = no of particles = 6.022x10²³ molecules contained in every mole of an element.
For a 9.33mols of NH3, we have 9.33x6.022x10²³molecules in NH3
5.62x10²⁴molecules of NH₃
Answer:
The distinction between the theory and the hypothesis. In the context of scientific reasoning, the assumption is created before any study has been finished for the sake of experimentation. The hypothesis, on the other side, is a concept laid out to describe events already backed by information.
Answer:
A dilute acid is when the concentration of water mixed in the acid is <em>higher</em> than the concentration of the acid itself. For example, 5% sulfuric acid is a dilute acid.
A concentrated acid is an acid that is in either <em>pure </em>form or has a <em>high </em>concentration.
Hope this helps! :)
<em></em>