Answer:
- <u><em>Option B. $1,025 a month for 10 years.</em></u>
Explanation:
Calculate the present value of each option:

Formula:
![PV=C\times \bigg[\dfrac{1}{r}-\dfrac{1}{r(1+r)^t}\bigg]](https://tex.z-dn.net/?f=PV%3DC%5Ctimes%20%5Cbigg%5B%5Cdfrac%7B1%7D%7Br%7D-%5Cdfrac%7B1%7D%7Br%281%2Br%29%5Et%7D%5Cbigg%5D)
Where:
- PV is the present value of the constant monthly payments
- r is the monthly rate
- t is the number of moths
<u>1. Option A will provide $1,500 a month for 6 years. </u>
![PV=$\ 1,500\times \bigg[\dfrac{1}{(0.005\overline 6}-\dfrac{1}{0.005\overline 6(1+0.005\overline 6)^{(6\times12)}}\bigg]](https://tex.z-dn.net/?f=PV%3D%24%5C%201%2C500%5Ctimes%20%5Cbigg%5B%5Cdfrac%7B1%7D%7B%280.005%5Coverline%206%7D-%5Cdfrac%7B1%7D%7B0.005%5Coverline%206%281%2B0.005%5Coverline%206%29%5E%7B%286%5Ctimes12%29%7D%7D%5Cbigg%5D)

<u>2. Option B will pay $1,025 a month for 10 years. </u>
![PV=$\ 1,025\times \bigg[\dfrac{1}{(0.005\overline 6}-\dfrac{1}{0.005\overline 6(1+0.005\overline 6)^{(10\times12)}}\bigg]](https://tex.z-dn.net/?f=PV%3D%24%5C%201%2C025%5Ctimes%20%5Cbigg%5B%5Cdfrac%7B1%7D%7B%280.005%5Coverline%206%7D-%5Cdfrac%7B1%7D%7B0.005%5Coverline%206%281%2B0.005%5Coverline%206%29%5E%7B%2810%5Ctimes12%29%7D%7D%5Cbigg%5D)

<u>3. Option C offers $85,000 as a lump sum payment today. </u>
<u></u>
<h2 /><h2> Conclusion:</h2>
The present value of the<em> option B, $1,025 a month for 10 years</em>, has a the greatest present value, thus since he is only concerned with the <em>financial aspects of the offier</em>, this is the one he should select.
The answer to your question is true.
Answer:
C. Total cost per unit times mark-up percentage per unit
Explanation:
The mark-up percentage is assumed to be computed by dividing the desired profit by the total cost.
The dollar amount of the mark-up per unit shall be computed by multiplying the total cost per unit with the markup percentage per unit.
The selling price of the product can be computed by adding the mark-up per unit to the cost price of each unit.