(-4,-2)
You just plug in the numbers from the ordered pair, into your equation. Remember, the formula for ordered pairs are (x,y). :)
Answer:
En una semana gastará 705,6 litros.
Step-by-step explanation:
Con la información proporcionada, puedes calcular cuánta agua gastará por día usando una regla de tres teniendo en cuenta que un día tiene 24 horas y estas equivalen a 1440 minutos. Además, puedes convertir los 700 ml a litros, considerando que 1 litro son 1000 mL, lo que significa que los 700 mL equivalen a 700/1000=0,7 Litros.
10 min → 0,7 L
1440 min → x
x=(1440*0,7)/10
x=100,8 L
Ahora que conoces la cantidad de agua que gastará por día, puedes multiplicar esta cantidad por 7 que es el número de días en una semana:
100,8*7=705,6 L
De acuerdo a esto, la respuesta es que en una semana gastará 705,6 litros.
Answer:
ans:
- option B
- option A
- option B
- option A
Step-by-step explanation:
for two triangle to be congruent corresponding sides and angle must be equal
Step-by-step explanation:
Since it remains only 1 sweet, we can subtract it from the total and get the amount of sweets distributed (=1024).
As all the sweets are distributed equally, we must divide the number of distributed sweets by all its dividers (excluding 1024 and 1, we'll see later why):
1) 512 => 2 partecipants
2) 256 => 4 partecipants
3) 128 => 8 partecipants
4) 64 => 16 partecipants
5) 32 => 32 partecipants
6) 16 => 64 partecipants
7) 8 => 128 partecipants
9) 4 => 256 partecipants
10) 2 => 512 partecipants
The number on the left represents the number of sweets given to the partecipants, and on the right we have the number of the partecipants. Note that all the numbers on the left are dividers of 1024.
Why excluding 1 and 1024? Because the problem tells us that there remains 1 sweet. If there was 1 sweet for every partecipant, the number of partecipants would be 1025, but that's not possible as there remains 1 sweet. If it was 1024, it wouldn't work as well because the sweets are 1025 and if 1 is not distributed it goes again against the problem that says all sweets are equally distributed.