Answer:
The farthest left box.
Step-by-step explanation:
In order for a relation to be a function, the order of numbers must be constant from the input to the output. The other numbers do not have a consistent value, but the one on the far left is x=+5 and y=-5, and it continues this way throughout the relation.
Hopefully this helped!
<u>Given</u><u> </u><u>:</u><u> </u>
- There is a quadrilateral.
- Two sides of the quadrilateral are parallel .
- Four angles are 96° , 2x° , 94° & ( 3y + 44 )°.
<u>To</u><u> </u><u>Find</u><u> </u><u>:</u><u>-</u>
<u>Solu</u><u>tion</u><u> </u><u>:</u><u>-</u>
Here , 96° & 2x° are co - interior angles and we know that the sum of co - Interior angles is 180°.
⇒ 96° + 2x = 180° .
⇒ 2x = 180° - 96° .
⇒ 2x = 84° .
⇒ x = 
<u>Hence</u><u> </u><u>value</u><u> </u><u>of </u><u>x</u><u> </u><u>is</u><u> </u><u>4</u><u>2</u><u>°</u><u> </u><u>.</u>
Similarly , 94° & ( 3y + 44) ° are co- interior angles
⇒ 94° + ( 3y + 44)° = 180° .
⇒ ( 3y + 44 )° = 180° - 94° .
⇒ 3y + 44° = 86°.
⇒ 3y = 86° - 44° .
⇒ 3y = 42° .
⇒ y = 
<u>Hence</u><u> </u><u>the </u><u>value</u><u> </u><u>of</u><u> </u><u>y</u><u> </u><u>is</u><u> </u><u>1</u><u>4</u><u>°</u><u>.</u>
<span>-2x^2 + 10x + 9 =0
multiply whole equation by -1
2x^2 -10x -9 =0
(sqrt2x)^2 -2(sqrt2x)(5/</span>sqrt2) -9=0
add (5/sqrt2)^2 on both sides
(sqrt2x)^2 -2(sqrt2x)(5/sqrt2) + (5/sqrt2)^2-9=(5/sqrt2)^2
a^2-2ab+b^2=(a-b)^2
(sqrt2x - 5/sqrt2)^2=(5/sqrt2)^2+9
(sqrt2x - 5/sqrt2)^2=21.5
taking squareroot on both sides
sqrt2x - 5/sqrt2 = +-4.64
so
sqrt2x - 5/sqrt2 = +4.64 or sqrt2x - 5/sqrt2 = -4.64
sqrt2x = 4.64 + 5/sqrt2 sqrt2x = -4.64 + 5/sqrt2
sqrt2x =8.18 sqrt2x = -1.1045
x=8.18/sqrt2 x= -1.1045/sqrt2
x=5.78 x=-0.781
1. Perpendicular Transverse Theorem
2. a=30 and b=60
8/4 should work, because the numerator's higher than the denominator.