Answer:
What is 0.42857142857 as a fraction?
To write 0.42857142857 as a fraction you have to write 0.42857142857 as numerator and put 1 as the denominator. Now you multiply numerator and denominator by 10 as long as you get in numerator the whole number.
0.42857142857 = 0.42857142857/1 = 4.2857142857/10 = 42.857142857/100 = 428.57142857/1000 = 4285.7142857/10000 = 42857.142857/100000 = 428571.42857/1000000 = 4285714.2857/10000000 = 42857142.857/100000000 = 428571428.57/1000000000 = 4285714285.7/10000000000 = 42857142857/100000000000
And finally we have:
0.42857142857 as a fraction equals 42857142857/100000000000
Answer:
excuse me, but how do we answer this? This question is unanswerable without it being a question!
Step-by-step explanation:
Answer:
The equation that represents the population after T years is
![P_{t} = 7,632,819,325 [1 +\frac{1.09}{100} ]^{T}](https://tex.z-dn.net/?f=P_%7Bt%7D%20%20%3D%207%2C632%2C819%2C325%20%5B1%20%2B%5Cfrac%7B1.09%7D%7B100%7D%20%5D%5E%7BT%7D)
Step-by-step explanation:
Population in the year 2018 ( P )= 7,632,819,325
Rate of increase R = 1.09 %
The population after T years is given by the formula
-------- (1)
Where P = population in 2018
R = rate of increase
T = time period
Put the values of P & R in above equation we get
![P_{t} = 7,632,819,325 [1 +\frac{1.09}{100} ]^{T}](https://tex.z-dn.net/?f=P_%7Bt%7D%20%20%3D%207%2C632%2C819%2C325%20%5B1%20%2B%5Cfrac%7B1.09%7D%7B100%7D%20%5D%5E%7BT%7D)
This is the equation that represents the population after T years.
Answer:
$97
Step-by-step explanation:
just add 72 and 25 dude
So first, we multiply out the brackets.
-15x - 18 + 2 = 17 + 16x -1
Then, bring all the terms onto one side so you can solve.
-15x-18+2-17-16x+1=0
Then, we simplify this.
-31x-32=0
Then, isolate x
-31x=32
x=32/-31 or -1.03 (nearest hundredth )