Answer:
I think you are missing something from the question, but if you were to find out how much you would get paid for a certain amount of hours from $12 per hour, then the formula would be:
Step-by-step explanation:
Let h = no. of hours worked
$12 * h
Answer:
Step-by-step explanation:
1 In general, given a{x}^{2}+bx+cax
2
+bx+c, the factored form is:
a(x-\frac{-b+\sqrt{{b}^{2}-4ac}}{2a})(x-\frac{-b-\sqrt{{b}^{2}-4ac}}{2a
2a
−b+√
b
2
−4ac
)(x−
2a
−b−√
b
2
−4ac
)
2 In this case, a=1a=1, b=-2b=−2 and c=-2c=−2.
(x-\frac{2+\sqrt{{(-2)}^{2}-4\times -2}}{2})(x-\frac{2-\sqrt{{(-2)}^{2}-4\times -2}}{2})(x−
2
2+√
(−2)
2
−4×−2
)(x−
2
2−√
(−2)
2
−4×−2
)
3 Simplify.
(x-\frac{2+2\sqrt{3}}{2})(x-\frac{2-2\sqrt{3}}{2})(x−
2
2+2√
3
)(x−
2
2−2√
3
)
4 Factor out the common term 22.
(x-\frac{2(1+\sqrt{3})}{2})(x-\frac{2-2\sqrt{3}}{2})(x−
2
2(1+√
3
)
)(x−
2
2−2√
3
)
5 Cancel 22.
(x-(1+\sqrt{3}))(x-\frac{2-2\sqrt{3}}{2})(x−(1+√
3
))(x−
2
2−2√
3
)
6 Simplify brackets.
(x-1-\sqrt{3})(x-\frac{2-2\sqrt{3}}{2})(x−1−√
3
)(x−
2
2−2√
3
)
7 Factor out the common term 22.
(x-1-\sqrt{3})(x-\frac{2(1-\sqrt{3})}{2})(x−1−√
3
)(x−
2
2(1−√
3
)
)
8 Cancel 22.
(x-1-\sqrt{3})(x-(1-\sqrt{3}))(x−1−√
3
)(x−(1−√
3
))
9 Simplify brackets.
(x-1-\sqrt{3})(x-1+\sqrt{3})(x−1−√
3
)(x−1+√
3
)
Yes.
To form a triangle every side must be smaller in length than the sum of the two other sides.
For example: sides denoted by a,b,c
for a triangle to form
a<b+c
b<a+c
c<a+b
Thus in the case of the <em>Isosceles </em>triangle with side lengths 1,8,8 the rules aforementioned are fulfilled. This means that a triangle with said side lengths can exist.
Answer:
Step-by-step explanation:
Please use parentheses so that there's no question about what constitutes the argument of the sqrt function:
y=2 sqrt x+4 → y = 2√(x + 4)
This result is obtained from y = √x by:
1) translating the graph of y = √x 4 units to the LEFT, and
2) stretching the resulting graph vertically by a factor of 2.