Answer:

Step-by-step explanation:
The given equation is

We can see that:


This means x=-2 is a zero of p(x).
From the long division in the attachment,
We can rewrite the polynomial as:

We now find solution to the quadratic part:

This is given by:

We plug in the values to get:




Therefore all solutions are:

A.) 7^4x = 10
log base 10 (7^4X) = log base 10 (10)
4x log base 10 (7) = 1
4x (0.8451) = 1
3.3804x = 1
x = 0.2958
b.) ln(2) + ln(4x-1) = 5
ln (2 * 4x-1) = 5
ln (8x-2) = 5
log base (3) (8x-2) = 5
e^5 = 8x-2
e^5+2 = 8x
x = 18.8016
Assuming that arcs are given in degrees, call S the following sum:
S = sin 1° + sin 2° + sin 3° + ... + sin 359° + sin 360°
Rearranging the terms, you can rewrite S as
S = [sin 1° + sin 359°] + [sin 2° + sin 358°] + ... + [sin 179° + sin 181°] + sin 180° +
+ sin 360°
S = [sin 1° + sin(360° – 1°)] + [sin 2° + sin(360° – 2°)] + ...+ [sin 179° + sin(360° – 179)°]
+ sin 180° + sin 360° (i)
But for any real k,
sin(360° – k) = – sin k
then,
S = [sin 1° – sin 1°] + [sin 2° – sin 2°] + ... + [sin 179° – sin 179°] + sin 180° + sin 360°
S = 0 + 0 + ... + 0 + 0 + 0 (... as sin 180° = sin 360° = 0)
S = 0
Each pair of terms in brackets cancel out themselves, so the sum equals zero.
∴ sin 1° + sin 2° + sin 3° + ... + sin 359° + sin 360° = 0 ✔
I hope this helps. =)
Tags: <em>sum summatory trigonometric trig function sine sin trigonometry</em>