1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KonstantinChe [14]
3 years ago
5

What is the derivative of e^(2x)

Mathematics
1 answer:
KIM [24]3 years ago
5 0
Using the chain rule: The derivative of e^u is (e^u)(u').  Notice that e^u is rewritten exactly as is and then multiplied by the derivative of the exponent.  
Let u=2x. So u'=2  
So the derivative of e^u is e^(2x)*2 This can also be written as 2e^(2x).
You might be interested in
What is the answer to this question?
Nitella [24]

Answer:

11x+2

Step-by-step explanation:

4 0
2 years ago
Last question for my homework
tensa zangetsu [6.8K]

Answer:

A total of 15 cups of punch.

Step-by-step explanation:

20% ( or 0.20) of the punch is pineapple juice so if you have 3 cups of this juice, by proportion, you can make  3 / 0.20 =  15 cups

6 0
3 years ago
Read 2 more answers
URGENT <br>Perform the indicated operation and simplify the result.
yan [13]

Answer:

The answer to your question is:  (2a - 1) / 4

Step-by-step explanation:

         \frac{12a^{2} - 3}{2} (2a + 1)^{-2}  ( \frac{6}{(2a +1)^{-1} } \\

        \frac{3(4a^{2} -1)}{2} \frac{1}{(2z + 1)^{2} } (\frac{2a + 1)}{6}

        \frac{3(2a + 1)(2a- 1) (2a + 1)}{12(2a + 1)(2a + 1)}

        \frac{(2a - 1)}{4}

8 0
3 years ago
Please help me I need help
MariettaO [177]
The collect 19 boxes by the end of everyday.
8 0
3 years ago
Implicit differentiation Please help
Anvisha [2.4K]

Answer:

y''(-1) =8

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            -y - xy' - 2y' = 0
  2. [Algebra] Isolate <em>y'</em> terms:                                                                               -xy' - 2y' = y
  3. [Algebra] Factor <em>y'</em>:                                                                                       y'(-x - 2) = y
  4. [Algebra] Isolate <em>y'</em>:                                                                                         y' = \frac{y}{-x-2}
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-y}{x+2}

<u>Step 3: Find </u><em><u>y</u></em>

  1. Define equation:                    -xy - 2y = -4
  2. Factor <em>y</em>:                                 y(-x - 2) = -4
  3. Isolate <em>y</em>:                                 y = \frac{-4}{-x-2}
  4. Simplify:                                 y = \frac{4}{x+2}

<u>Step 4: Rewrite 1st Derivative</u>

  1. [Algebra] Substitute in <em>y</em>:                                                                               y' = \frac{-\frac{4}{x+2} }{x+2}
  2. [Algebra] Simplify:                                                                                         y' = \frac{-4}{(x+2)^2}

<u>Step 5: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}
  2. [Derivative] Simplify:                                                                                      y'' = \frac{8}{(x+2)^3}

<u>Step 6: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em>:                                                                               y''(-1) = \frac{8}{(-1+2)^3}
  2. [Algebra] Evaluate:                                                                                       y''(-1) =8
6 0
3 years ago
Read 2 more answers
Other questions:
  • matt has answered 20 of 25 of the questions on a test. what percentage of the test questions has matt answered
    7·2 answers
  • Please help !
    7·1 answer
  • 50 for the correct answer
    11·2 answers
  • Which two-dimensional shape cannot be used to create a prism?
    6·1 answer
  • If a and b represent numbers, which of the following statements represents the commutative property of multiplication?
    9·2 answers
  • 7 - 6a = -5 -8a solve please
    15·2 answers
  • The measure of an angle is 28.1°what is the measure of its complementary angle
    8·1 answer
  • If I want to make some teddy bear slippers and I wear I size 8 in shoes what inch of bear should I get
    8·1 answer
  • If f{x)=-4(x-6)+15,what is f(3)?<br> A -3 B3 C27 D51
    11·2 answers
  • The net below depicts a triangular prism. What is the total surface area of the prism? And please explain how did you get your a
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!