1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brums [2.3K]
3 years ago
8

Image attached: some sort of triangle stuff

Mathematics
1 answer:
Drupady [299]3 years ago
8 0

Answer:

C

Step-by-step explanation:

On edg 2020

You might be interested in
H e l ppppppppppp
Vikentia [17]

Answer:

(Please vote me Brainliest if this helped!)

Letter A

Step-by-step explanation:

Pythagorean Triples c^2=a^2+b^2

A) Not a Pythagorean Triple

40^2=12^2+35^2 : 1,600 ≠ 144 + 1,225

B) Pythagorean Triple

53^{2} = 28^{2} + 45^{2}  : 2,809 = 784 + 2,025

C) Pythagorean Triple

65^2= 33^2+56^2 : 4,225 = 1,089 + 3,136

D) Pythagorean Triple

85^{2} = 36^{2} + 77^{2} : 7,225 = 1,296 + 5,929

3 0
3 years ago
Read 2 more answers
You are given 4 matrices M1, M2, M3, M4 and you are asked to determine the optimal schedule for the product M1 ×M2 × M3 ×M4 that
alexandr1967 [171]

Answer:

Step-by-step explanation:

first method is to try out all possible combinations and pick out the best one which has the minimum operations but that would be infeasible method if the no of matrices increases  

so the best method would be using the dynamic programming approach.

A1 = 100 x 50

A2 = 50 x 200

A3 = 200 x 50

A4 = 50 x 10

Table M can be filled using the following formula

Ai(m,n)

Aj(n,k)

M[i,j]=m*n*k

The matrix should be filled diagonally i.e., filled in this order

(1,1),(2,2)(3,3)(4,4)

(2,1)(3,2)(4,3)

(3,1)(4,2)

(4,1)

<u>                  Table M[i, j]                                             </u>

             1                      2                  3                    4

4    250000          200000        100000                0  

3      

750000        500000            0

2      1000000             0

1            

0

Table S can filled this way

Min(m[(Ai*Aj),(Ak)],m[(Ai)(Aj*Ak)])

The matrix which is divided to get the minimum calculation is selected.

Table S[i, j]

           1          2         3        

4

4          1           2         3

3          

1          2

2            1

1

After getting the S table the element which is present in (4,1) is key for dividing.

So the matrix multiplication chain will be (A1 (A2 * A3 * A4))

Now the element in (4,2) is 2 so it is the key for dividing the chain

So the matrix multiplication chain will be (A1 (A2 ( A3 * A4 )))

Min number of multiplications: 250000

Optimal multiplication order: (A1 (A2 ( A3 * A4 )))

to get these calculations perform automatically we can use java

code:

public class MatrixMult

{

public static int[][] m;

public static int[][] s;

public static void main(String[] args)

{

int[] p = getMatrixSizes(args);

int n = p.length-1;

if (n < 2 || n > 15)

{

System.out.println("Wrong input");

System.exit(0);

}

System.out.println("######Using a recursive non Dyn. Prog. method:");

int mm = RMC(p, 1, n);

System.out.println("Min number of multiplications: " + mm + "\n");

System.out.println("######Using bottom-top Dyn. Prog. method:");

MCO(p);

System.out.println("Table of m[i][j]:");

System.out.print("j\\i|");

for (int i=1; i<=n; i++)

System.out.printf("%5d ", i);

System.out.print("\n---+");

for (int i=1; i<=6*n-1; i++)

System.out.print("-");

System.out.println();

for (int j=n; j>=1; j--)

{

System.out.print(" " + j + " |");

for (int i=1; i<=j; i++)

System.out.printf("%5d ", m[i][j]);

System.out.println();

}

System.out.println("Min number of multiplications: " + m[1][n] + "\n");

System.out.println("Table of s[i][j]:");

System.out.print("j\\i|");

for (int i=1; i<=n; i++)

System.out.printf("%2d ", i);

System.out.print("\n---+");

for (int i=1; i<=3*n-1; i++)

System.out.print("-");

System.out.println();

for (int j=n; j>=2; j--)

{

System.out.print(" " + j + " |");

for (int i=1; i<=j-1; i++)

System.out.printf("%2d ", s[i][j]);

System.out.println();

}

System.out.print("Optimal multiplication order: ");

MCM(s, 1, n);

System.out.println("\n");

System.out.println("######Using top-bottom Dyn. Prog. method:");

mm = MMC(p);

System.out.println("Min number of multiplications: " + mm);

}

public static int RMC(int[] p, int i, int j)

{

if (i == j) return(0);

int m_ij = Integer.MAX_VALUE;

for (int k=i; k<j; k++)

{

int q = RMC(p, i, k) + RMC(p, k+1, j) + p[i-1]*p[k]*p[j];

if (q < m_ij)

m_ij = q;

}

return(m_ij);

}

public static void MCO(int[] p)

{

int n = p.length-1;     // # of matrices in the product

m    =    new    int[n+1][n+1];        //    create    and    automatically initialize array m

s = new int[n+1][n+1];

for (int l=2; l<=n; l++)

{

for (int i=1; i<=n-l+1; i++)

{

int j=i+l-1;

m[i][j] = Integer.MAX_VALUE;

for (int k=i; k<=j-1; k++)

{

int q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];

if (q < m[i][j])

{

m[i][j] = q;

s[i][j] = k;

}

}

}

}

}

public static void MCM(int[][] s, int i, int j)

{

if (i == j) System.out.print("A_" + i);

else

{

System.out.print("(");

MCM(s, i, s[i][j]);

MCM(s, s[i][j]+1, j);

System.out.print(")");

}

}

public static int MMC(int[] p)

{

int n = p.length-1;

m = new int[n+1][n+1];

for (int i=0; i<=n; i++)

for (int j=i; j<=n; j++)

m[i][j] = Integer.MAX_VALUE;

return(LC(p, 1, n));

}

public static int LC(int[] p, int i, int j)

{

if (m[i][j] < Integer.MAX_VALUE) return(m[i][j]);

if (i == j) m[i][j] = 0;

else

{

for (int k=i; k<j; k++)

{

int   q   =   LC(p,   i,   k)   +   LC(p,   k+1,   j)   +   p[i-1]*p[k]*p[j];

if (q < m[i][j])

m[i][j] = q;

}

}

return(m[i][j]);

}

public static int[] getMatrixSizes(String[] ss)

{

int k = ss.length;

if (k == 0)

{

System.out.println("No        matrix        dimensions        entered");

System.exit(0);

}

int[] p = new int[k];

for (int i=0; i<k; i++)

{

try

{

p[i] = Integer.parseInt(ss[i]);

if (p[i] <= 0)

{

System.out.println("Illegal input number " + k);

System.exit(0);

}

}

catch(NumberFormatException e)

{

System.out.println("Illegal input token " + ss[i]);

System.exit(0);

}

}

return(p);

}

}

output:

7 0
3 years ago
The expression x2 - 10x + 24 is equivalent to (1) (x + 12)(x - 2) (3) (x + 6)(x + 4) (2) (x - 12)(x + 2) (4) (x - 6)(x - 4)
Oksi-84 [34.3K]

Answer:

D) (x-6)(x-4)

Step-by-step explanation:

(x-6)(x-4)=x^2-6x-4x+24=x^2-10x+24

3 0
3 years ago
-x-(-y)+(-x)-y+5 x equals -3 y equals -6
AveGali [126]
It should be -1 I believe.
8 0
3 years ago
I WILL GIVE BRAINLIST, DUE IN 15 MIN
Burka [1]

Answer:

$34.50

Step-by-step explanation:

At 3.45 for 3/4 pounds that = to 4.60 for 1 pound.

4.60 *7.5 pounds= $34.50

7 0
3 years ago
Other questions:
  • Please help on this and please explain how you solved it!
    7·1 answer
  • You buy four 3-ring binders for $14. How much does one 3-ring binder cost?
    7·1 answer
  • A rectangle has a length of 10 inches and a width of 4 inches
    7·2 answers
  • Which of the following greatest <br>6+(-2)<br>6-(-2)<br>6×(-2)<br>6+(-2)​
    13·1 answer
  • When adding two negative numbers,<br> the absolute value of the numbers and keep the negative sign.
    11·1 answer
  • Un terreno cuadrangular mide 1/4 km de un lado y 1/6 km del otro lado. El area es 1/24.
    9·1 answer
  • Rodrigo runs 17.5 miles every week. He runs the same distance each day. How far does rodrigo run each day?
    8·1 answer
  • Jay works at a sandwich shop. He needs to make 7 turkey sandwiches. Each sandwich will have 1/3 of a pound of turkey. How many p
    10·2 answers
  • Probability is a measure of how likely an event is to occur. Choose the probability that best matches each of the following stat
    7·1 answer
  • Carl and Joseph are recycling newspapers for a school project. They have collected 600 pounds of newspaper, which they must sepa
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!