Both (m + n)2<span> and 36 are </span>perfect<span> squares, and 12(m + n) is twice the product of (m + n) and 6. Since the middle term is positive, the pattern is (a + b)</span>2<span> = a</span>2<span> + 2ab + b</span>2. Place the x2<span> tile, 4 x-tiles and 4 1-tiles in the grid. Fill the outside sections of the grid with x-tiles and 1-tiles that complete the pattern.</span>
Answer:
39
Step-by-step explanation:
f(x)=17x
f(3)=17(3)
f(x)=51
g(x)=4x
g(3)=4(3)
g(x)=12
f(x)-g(x)
51-12= 39
Let me give you an example
6x + 5x + 14 + 6
So all you is combine 6x and 5x
11x +14 + 6
Then you just combine the other two numbers
11x + 20
It is 3 how many different outcomes are they there are three outcomes road once
Answer: ![\frac{\sqrt[4]{10xy^3}}{2y}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B4%5D%7B10xy%5E3%7D%7D%7B2y%7D)
where y is positive.
The 2y in the denominator is not inside the fourth root
==================================================
Work Shown:
![\sqrt[4]{\frac{5x}{8y}}\\\\\\\sqrt[4]{\frac{5x*2y^3}{8y*2y^3}}\ \ \text{.... multiply top and bottom by } 2y^3\\\\\\\sqrt[4]{\frac{10xy^3}{16y^4}}\\\\\\\frac{\sqrt[4]{10xy^3}}{\sqrt[4]{16y^4}} \ \ \text{ ... break up the fourth root}\\\\\\\frac{\sqrt[4]{10xy^3}}{\sqrt[4]{(2y)^4}} \ \ \text{ ... rewrite } 16y^4 \text{ as } (2y)^4\\\\\\\frac{\sqrt[4]{10xy^3}}{2y} \ \ \text{... where y is positive}\\\\\\](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B5x%7D%7B8y%7D%7D%5C%5C%5C%5C%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B5x%2A2y%5E3%7D%7B8y%2A2y%5E3%7D%7D%5C%20%5C%20%5Ctext%7B....%20multiply%20top%20and%20bottom%20by%20%7D%202y%5E3%5C%5C%5C%5C%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B10xy%5E3%7D%7B16y%5E4%7D%7D%5C%5C%5C%5C%5C%5C%5Cfrac%7B%5Csqrt%5B4%5D%7B10xy%5E3%7D%7D%7B%5Csqrt%5B4%5D%7B16y%5E4%7D%7D%20%5C%20%5C%20%5Ctext%7B%20...%20break%20up%20the%20fourth%20root%7D%5C%5C%5C%5C%5C%5C%5Cfrac%7B%5Csqrt%5B4%5D%7B10xy%5E3%7D%7D%7B%5Csqrt%5B4%5D%7B%282y%29%5E4%7D%7D%20%5C%20%5C%20%5Ctext%7B%20...%20rewrite%20%7D%2016y%5E4%20%5Ctext%7B%20as%20%7D%20%282y%29%5E4%5C%5C%5C%5C%5C%5C%5Cfrac%7B%5Csqrt%5B4%5D%7B10xy%5E3%7D%7D%7B2y%7D%20%5C%20%5C%20%5Ctext%7B...%20where%20y%20is%20positive%7D%5C%5C%5C%5C%5C%5C)
The idea is to get something of the form
in the denominator. In this case, 
To be able to reach the
, your teacher gave the hint to multiply top and bottom by
For more examples, search out "rationalizing the denominator".
Keep in mind that
only works if y isn't negative.
If y could be negative, then we'd have to say
. The absolute value bars ensure the result is never negative.
Furthermore, to avoid dividing by zero, we can't have y = 0. So all of this works as long as y > 0.