Answer:
the answer should be 152.6 ! just moving the decimal over to the left!!
You can just 1) multiply the binomial by itself, or you can use 2) the square of a binomial pattern. I'll show it to you both ways.
1) Multiply the binomial by itself.
(3x - 2)^2 = (3x - 2)(3x - 2) =
Multiply every term of the first binomial by every term of the second binomial, then collect like terms. (This is often called using FOIL.)
= 9x^2 - 6x - 6x + 4
= 9x^2 - 12x + 4
2) Use the square of a binomial pattern
The square of a binomial is
(a - b)^2 = a^2 - 2ab - b^2
a^2 is the square of the first term.
b^2 is the square of the second term.
-2ab is the product of the two terms and 2.
You have
(3x - 2)^2,
where the first term is 3x, and the second term is -2
square the first term: 9x^2
square the last term: 4
the product of the terms and 2 is: -12x
Put it all together, and you get
9x^2 - 12x + 4
just like we got above with the other method.
Place a dot on the origin.
A line that has a slope of

goes by this formula:

So "rise -2" and "run 3."
Rise -2 is basically go down 2, so go down 2 units from the origin. Run 3 means go right 3 units from (0, -2).
Draw a line through (3, -2) and (0, 0).
Answer:
B) (3, –2)
Explanation:
The inequality is y ≤ –x + 1
There are two ways to do this. You can try the four options by seeing where they lie on the graph, or by inputting them into the inequality and seeing if they check out. I am going to do a bit of both.
I know that the solution cannot have two positive coordinates because the first quadrant is not part of the solution, so I won't guess A or C.
I'll try (3, –2) (which is option B).
On the graph, (3, –2) is on the line, which means it is part of the solution because the line is solid and the inequality is a greater than or equal to sign.
Try it in the inequality:
y ≤ –x + 1
–2 ≤ –3 + 1
–2 ≤ –2 yes this checks out.
The formula is: A=1/2 h (base one + base two)
<span>Plug in your numbers and you will get the area.</span>