1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scZoUnD [109]
4 years ago
5

2nq=3+7nq solve for n thanks

Mathematics
2 answers:
Gnesinka [82]4 years ago
7 0

Answer:

n = - \frac{3}{5q}

Step-by-step explanation:

Given

2nq = 3 + 7nq ( subtract 7nq from both sides )

- 5nq = 3 ( divide both sides by the multiplier - 5q )

n = \frac{3}{-5q} = - \frac{3}{5q}

Nataly_w [17]4 years ago
5 0

Answer:

n= -3/q

Step-by-step explanation:

2nq-7nq=3

-5nq=3

n = -3/q

You might be interested in
(2a^-2)(3a^3b^2)(c^-2)
aalyn [17]

Answer:

Step-by-step explanation:

7 0
3 years ago
A rectangle has a height of 2 + 9 and a width of x2 + 2x.
Dafna1 [17]

Answer: 40

Step-by-step explanation:

8 0
3 years ago
If A and B are two angles in standard position in Quadrant I, find cos( A +B ) for the given function values. sin A = 8/17 and c
horsena [70]

Answer:

Part 1) cos(A + B) = \frac{140}{221}

Part 2) cos(A - B) = \frac{153}{185}

Part 3) cos(A - B) = \frac{84}{85}

Part 4) cos(A + B) = -\frac{36}{85}

Part 5) cos(A - B) = \frac{63}{65}

Part 6) cos(A+ B) = -\frac{57}{185}

Step-by-step explanation:

<u><em>the complete answer in the attached document</em></u>

Part 1) we have

sin(A)=\frac{8}{17}

cos(B)=\frac{12}{13}

Determine cos (A+B)

we know that

cos(A + B) = cos(A) cos(B)-sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{8}{17})^2=1

cos^2(A)+\frac{64}{289}=1

cos^2(A)=1-\frac{64}{289}

cos^2(A)=\frac{225}{289}

cos(A)=\pm\frac{15}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{15}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{12}{13})^2=1

sin^2(B)+\frac{144}{169}=1

sin^2(B)=1-\frac{144}{169}

sin^2(B)=\frac{25}{169}

sin(B)=\pm\frac{25}{169}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{5}{13}

step 3

Find cos(A+B)

substitute in the formula

cos(A + B) = \frac{15}{17} \frac{12}{13}-\frac{8}{17}\frac{5}{13}

cos(A + B) = \frac{180}{221}-\frac{40}{221}

cos(A + B) = \frac{140}{221}

Part 2) we have

sin(A)=\frac{3}{5}

cos(B)=\frac{12}{37}

Determine cos (A-B)

we know that

cos(A - B) = cos(A) cos(B)+sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{3}{5})^2=1

cos^2(A)+\frac{9}{25}=1

cos^2(A)=1-\frac{9}{25}

cos^2(A)=\frac{16}{25}

cos(A)=\pm\frac{4}{5}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{4}{5}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{12}{37})^2=1

sin^2(B)+\frac{144}{1,369}=1

sin^2(B)=1-\frac{144}{1,369}

sin^2(B)=\frac{1,225}{1,369}

sin(B)=\pm\frac{35}{37}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{35}{37}

step 3

Find cos(A-B)

substitute in the formula

cos(A - B) = \frac{4}{5} \frac{12}{37}+\frac{3}{5} \frac{35}{37}

cos(A - B) = \frac{48}{185}+\frac{105}{185}

cos(A - B) = \frac{153}{185}

Part 3) we have

sin(A)=\frac{15}{17}

cos(B)=\frac{3}{5}

Determine cos (A-B)

we know that

cos(A - B) = cos(A) cos(B)+sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{15}{17})^2=1

cos^2(A)+\frac{225}{289}=1

cos^2(A)=1-\frac{225}{289}

cos^2(A)=\frac{64}{289}

cos(A)=\pm\frac{8}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{8}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{3}{5})^2=1

sin^2(B)+\frac{9}{25}=1

sin^2(B)=1-\frac{9}{25}

sin^2(B)=\frac{16}{25}

sin(B)=\pm\frac{4}{5}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{4}{5}

step 3

Find cos(A-B)

substitute in the formula

cos(A - B) = \frac{8}{17} \frac{3}{5}+\frac{15}{17} \frac{4}{5}

cos(A - B) = \frac{24}{85}+\frac{60}{85}

cos(A - B) = \frac{84}{85}

Part 4) we have

sin(A)=\frac{15}{17}        

cos(B)=\frac{3}{5}

Determine cos (A+B)

we know that    

cos(A + B) = cos(A) cos(B)-sin(A) sin(B)

step 1

Find the value of cos(A)

Remember that

cos^2(A)+sin^2(A)=1

substitute the given value

cos^2(A)+(\frac{15}{17})^2=1

cos^2(A)+\frac{225}{289}=1

cos^2(A)=1-\frac{225}{289}      

cos^2(A)=\frac{64}{289}

cos(A)=\pm\frac{8}{17}

The angle A belong to the I quadrant, the cosine is positive

cos(A)=\frac{8}{17}

step 2

Find the value of sin(B)

Remember that

cos^2(B)+sin^2(B)=1

substitute the given value

sin^2(B)+(\frac{3}{5})^2=1

sin^2(B)+\frac{9}{25}=1

sin^2(B)=1-\frac{9}{25}

sin^2(B)=\frac{16}{25}

sin(B)=\pm\frac{4}{5}

The angle B belong to the I quadrant, the sine is positive

sin(B)=\frac{4}{5}

step 3

Find cos(A+B)

substitute in the formula    

cos(A + B) = \frac{8}{17} \frac{3}{5}-\frac{15}{17} \frac{4}{5}

cos(A + B) = \frac{24}{85}-\frac{60}{85}

cos(A + B) = -\frac{36}{85}

Download odt
4 0
4 years ago
Please help! you'll get Brainliest if you do!
alisha [4.7K]

Answer:

b

Step-by-step explanation:

3 0
3 years ago
It takes Max three hours to run 30 kilometers. Georges, on the other hand, travels the same distance in 2 hours and 20 minutes.
Mamont248 [21]

George will arrive 20 minutes before Max

It takes Max 3 hours(180 minutes) to run 30 km .

The rate can be calculated as follows:

rate = 30 / 180 = 1/6 km/ min

George uses 2 hours 20 minutes(140 minutes) to run 30 km.

The rate can be calculated as follows:

rate =  30 / 140 = 3/14 km / min

If both are to complete a 15-kilometre race, Therefore,

Max time will  be

1 / 6 = 15 / t

t = 15 × 6

t = 90 minutes

George time will be

3/14 = 15 / t

3t = 210

t = 210 / 3

t = 70 minutes

Time difference = 90  - 70 = 20 minutes

Therefore, George will arrive 20 minutes earlier than Max

read more: brainly.com/question/18594378?referrer=searchResults

3 0
3 years ago
Other questions:
  • Hurry !! <br><br>Expand (2m+4) (m-3)
    5·2 answers
  • Jessica's meal cost $19.64 and Derrick's meal cost $32.40. Derrick pays for both meals, and leave a 15% tip. What is the total c
    14·2 answers
  • Calculate the mean of 79,58,72,61,80​
    11·2 answers
  • Ratios and Scale Worksheet #1. What does it mean when a map of a park says its scale is 1 to 50? #2. If a pathway in this same p
    14·1 answer
  • Will mark brainliest if gotten right
    15·1 answer
  • What is the equation for the line of best fit for statistical chart?(In math)
    14·1 answer
  • 1. Find the volume of the shipping box using the two methods and show your work: 1. Packing cubes 2. Using the volume formula 2.
    6·1 answer
  • What is 426,748 rounded to the nearest hundred?<br> Plesae help me
    13·2 answers
  • Please help picture is below
    6·1 answer
  • Solve Two-Step Equations 2x + 1 = 9
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!