Answer:
seventeen million, eight hundred seventy-four thousand
Step-by-step explanation:
hope this helps
pls mark brainliest
Answer:
people in Africa. African nations typically fall toward the bottom of any list measuring small size economic activity, such as income per capita or GDP per capita, despite a wealth of natural resources
Step-by-step explanation:
<h3>Answer: Approximately 191 bees</h3>
================================================
Work Shown:
One way to express exponential form is to use
y = a*b^x
where 'a' is the initial value and 'b' is linked to the growth rate.
Since we're told 34 bees are there initially, we know a = 34.
Then after 4 days, we have 48 bees. So we can say,
y = a*b^x
y = 34*b^x
48 = 34*b^4
48/34 = b^4
24/17 = b^4
b^4 = 24/17
b = (24/17)^(1/4)
b = 1.090035
Which is approximate.
The function updates to
y = a*b^x
y = 34*(1.090035)^x
------------------------
As a way to check to see if we have the right function, plug in x = 0 and we find:
y = 34*(1.090035)^x
y = 34*(1.090035)^0
y = 34*(1)
y = 34
So there are 34 bees on day 0, ie the starting day.
Plug in x = 4
y = 34*(1.090035)^x
y = 34*(1.090035)^4
y = 34*1.4117629
y = 47.9999386
Due to rounding error we don't land on 48 exactly, but we can round to this value.
We see that after 4 days, there are 48 bees.
So we confirmed the correct exponential function.
------------------------
At this point we can find out how many bees there are expected to be after 20 days.
Plug in x = 20 to get
y = 34*(1.090035)^x
y = 34*(1.090035)^20
y = 190.672374978452
Round to the nearest whole number to get 191.
There are expected to be roughly 191 bees on day 20.
Answer:
- vertical scaling by a factor of 1/3 (compression)
- reflection over the y-axis
- horizontal scaling by a factor of 3 (expansion)
- translation left 1 unit
- translation up 3 units
Step-by-step explanation:
These are the transformations of interest:
g(x) = k·f(x) . . . . . vertical scaling (expansion) by a factor of k
g(x) = f(x) +k . . . . vertical translation by k units (upward)
g(x) = f(x/k) . . . . . horizontal expansion by a factor of k. When k < 0, the function is also reflected over the y-axis
g(x) = f(x-k) . . . . . horizontal translation to the right by k units
__
Here, we have ...
g(x) = 1/3f(-1/3(x+1)) +3
The vertical and horizontal transformations can be applied in either order, since neither affects the other. If we work left-to-right through the expression for g(x), we can see these transformations have been applied:
- vertical scaling by a factor of 1/3 (compression) . . . 1/3f(x)
- reflection over the y-axis . . . 1/3f(-x)
- horizontal scaling by a factor of 3 (expansion) . . . 1/3f(-1/3x)
- translation left 1 unit . . . 1/3f(-1/3(x+1))
- translation up 3 units . . . 1/3f(-1/3(x+1)) +3
_____
<em>Additional comment</em>
The "working" is a matter of matching the form of g(x) to the forms of the different transformations. It is a pattern-matching problem.
The horizontal transformations could also be described as ...
- translation right 1/3 unit . . . f(x -1/3)
- reflection over y and expansion by a factor of 3 . . . f(-1/3x -1/3)
The initial translation in this scenario would be reflected to a translation left 1/3 unit, then the horizontal expansion would turn that into a translation left 1 unit, as described above. Order matters.
Answer:
(-4,169)
Step-by-step explanation:
11 (-4)^2 - 5(-4)+13
11(16)- 20 +13
176 -20+13
169