We are asked to determine the correlation factor "r" of the given table. To do that we will first label the column for "Quality" as "x" and the column for "Easiness" as "y". Like this:
Now, we create another column with the product of "x" and "y". Like this:
Now, we will add another column with the squares of the values of "x". Like this:
Now, we add another column with the squares of the values of "y":
Now, we sum the values on each of the columns:
Now, to get the correlation factor we use the following formula:

Where:

Now we substitute the values, we get:

Solving the operations:

Therefore, the correlation factor is 0.858. If the correlation factor approaches the values of +1, this means that there is a strong linear correlation between the variables "x" and "y" and this correlation tends to be with a positive slope.
1/2 over -2/5 + (-1/4)
10/20 over -8/20 + (-5/20)
1 5/20 + (-5/20)
1
The answer is 1
Answer:
Step-by-step explanation:
When you find the sum of a number you are adding two or more numbers together. therefore the only answer that you could use to get a sum of 5 when your first term is 12 would be -7
Given:
The given quadratic polynomial is :

To find:
The quadratic polynomial whose zeroes are negatives of the zeroes of the given polynomial.
Solution:
We have,

Equate the polynomial with 0 to find the zeroes.

Splitting the middle term, we get




The zeroes of the given polynomial are -3 and 4.
The zeroes of a quadratic polynomial are negatives of the zeroes of the given polynomial. So, the zeroes of the required polynomial are 3 and -4.
A quadratic polynomial is defined as:




Therefore, the required polynomial is
.
Answer:
a. 12 feet b. 12 feet 0.5 inches c. 8.33 %
Step-by-step explanation:
a. How far out horizontally on the ground will it protrude from the building?
Since the rise to run ratio is 1:12 and the building is 12 inches off the ground, let x be the horizontal distance the ramp protrudes.
So, by ratios rise/run = 1/12 = 12/x
1/12 = 12/x
x = 12 × 12
x = 144 inches
Since 12 inches = 1 foot, 144 inches = 144 × 1 inch = 144 × 1 foot/12 inches = 12 feet
b. How long should the ramp be?
The length of the ramp, L is gotten from Pythagoras' theorem since the ramp is a right-angled triangle with sides 12 inches and 144 inches respectively.
So, L = √(12² + 144²)
= √[12² + (12² × 12²)]
= 12√(1 + 144)
= 12√145
= 12 × 12.042
= 144.5 inches
Since 12 inches = 1 foot, 144.5 inches = 144 × 1 inch + 0.5 inches = 144 × 1 foot/12 inches + 0.5 inches = 12 feet 0.5 inches
c. What percent grade is the ramp?
The percentage grade of the ramp = rise/run × 100 %
= 12 inches/144 inches × 100 %
= 1/12 × 100 %
= 0.0833 × 100 %
= 8.33 %