Answer:
10.8 days (3 sig.figs.)
Explanation:
All radioactive decay is 1st order decay defined by the expression A = A₀e^-kt
which is solved for time of decay (t) => t = ln(A/A₀) / -k
A = final weight = 1.0 gram
A₀ = initial weight = 16.0 grams
k = rate constant = 0.693/t(1/2) = 0.693/2.69 days = 0.258 days⁻¹
t = ln(1/16) / -0.258da⁻¹ = (-2.77/-0.258) days = 10.74646792 days (calculator)
≅ 10 days (1 sig. fig. based on given 1 gram mass)
Answer:
Water outside the cell will flow inwards by osmosis to attain equilibrium
Explanation:
In the hypotonic environment, the concentration of water is greater outside the cell and the concentration of solute is higher inside. A solution outside of a cell has a lower concentration of solutes relative to the cytosol.
If concentrations of dissolved solutes are greater inside the cell, the concentration of water inside the cell is correspondingly lower. As a result, water outside the cell will flow inwards by osmosis to attain equilibrium.
Osmosis is a process by which molecules of a solvent tend to pass from a less concentrated solution into a more concentrated one through a semipermeable membrane.
It would cause a drop <span>but I am not sure double check other answers </span>
Al(NO3)3(aq) + 3NaOH(s) --> Al(OH)3 (s) + 3NaNO3 (aq)
The precipitate here is Al(OH)3 (s), since the solid reactant is the precipitate in the aqueous solution. Usually, it is okay to assume in basic chemistry that the transition metal is going to be part of the compound that is the precipitate, especially in an acidic salt and a strong base reaction that we have here.