Answer:
y=3/-1x+4
Step-by-step explanation:
Okay so first thing you need to know is that if there is an ordered pair (x, y) where x is 0, your y-intercept is your y. For example, your problem has (0, 4) your x is 0 and your y is 4. Therefore your y-intercept is 4 which is the b. To find your mx, or slope, you need to do (y2-y1)/(x2-x1). Your y2 will be your y in your second ordered pair and your y1 will be in your y in the first ordered pair. Same for your x. So, (4-1)/(0-1) which equals 3/-1. 3/-1 is your slope. So, your answer in slop intercept form is: y= 3/-1x+4. You could also try y= -3x+4 if that makes you more comfortable.
I know this is long this is my first time doing this lol.
Answer:
y = (1/4)x+3
Step-by-step explanation:
Isolate the variable by dividing each side by factors that don't contain the variable.
f=e-g/d
Answer:
C. True; by the Invertible Matrix Theorem if the equation Ax=0 has only the trivial solution, then the matrix is invertible. Thus, A must also be row equivalent to the n x n identity matrix.
Step-by-step explanation:
The Invertible matrix Theorem is a Theorem which gives a list of equivalent conditions for an n X n matrix to have an inverse. For the sake of this question, we would look at only the conditions needed to answer the question.
- There is an n×n matrix C such that CA=
. - There is an n×n matrix D such that AD=
. - The equation Ax=0 has only the trivial solution x=0.
- A is row-equivalent to the n×n identity matrix
. - For each column vector b in
, the equation Ax=b has a unique solution. - The columns of A span
.
Therefore the statement:
If there is an n X n matrix D such that AD=I, then there is also an n X n matrix C such that CA = I is true by the conditions for invertibility of matrix:
- The equation Ax=0 has only the trivial solution x=0.
- A is row-equivalent to the n×n identity matrix
.
The correct option is C.