1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adoni [48]
3 years ago
8

Solve for x. 2x = 15 + x a) x = -15 b) x = 15 c) x = -15/2 d) x = 15/2

Mathematics
2 answers:
Lorico [155]3 years ago
6 0

Answer:

x=15

Step-by-step explanation:

topjm [15]3 years ago
3 0

Answer:

x = 15

Step-by-step explanation:

You might be interested in
A triangle has 2 sides that equal 6 inches. The other side equals 4 inches. What kind of triangle is this
Tom [10]
Ισοσκελες τρίγωνο
....
7 0
3 years ago
Read 2 more answers
If a rectangle's length is 7 more than 4 times the width and the perimeter is 54 what are the dimensions of the rectangle?
Rus_ich [418]
Let w = width of the rectangle 
<span>4w+7 = length of the rectangle </span>

<span>perimeter = 2 lengths + 2 widths </span>

<span>2w + 2(4w+7) = 54 </span>
<span>2w + 8w + 14 = 54 </span>
<span>10w = 40 </span>
<span>w = 4 </span>
<span>4w+7 = 23 </span>

<span>dimensions of rectangle: </span>
<span>width = 4 </span>
<span>length = 23 hope this helps</span>
4 0
3 years ago
Use greatest common factor and the distributive property to write equivalent expressions in factored form for the following expr
Nitella [24]

Answer:

a.  4(d+3e)

b.  6(3x+5y)

c.  7(3a+4y)

d.  8(3f+7g)

Step-by-step explanation:

In each case we find the greatest common factor of the numbers. That is the greatest number that goes into both the numbers. Then we factor it out in front and inside parentheses we divide each original term by the greatest common factor:

a. 4d+12e, GCF: 4

\displaystyle4\left(\frac{4d}{4}+\frac{12e}{4}\right)=4(d+3e)

b. 18x+30y, GCF: 6

\displaystyle6\left(\frac{18x}{6}+\frac{30y}{6}\right)=6(3x+5y)

c. 21a+28y, GCF: 7

\displaystyle7\left(\frac{21a}{7}+\frac{28y}{7}\right)=7(3a+4y)

d. 24f+56g, GCF: 8

\displaystyle8\left(\frac{24f}{8}+\frac{56g}{8}\right)=8(3f+7g)

5 0
3 years ago
Of 8
Tomtit [17]

Answer:

98.5kg

Step-by-step explanation:

since we are rounding to the nearest whole number, our answer will use ±0.5

as we are calculating upper bound, we will add 0.5 to the original weight, so the answer is 98.5 kg

6 0
2 years ago
Verify that the given functions y1 and y2 satisfy the corresponding homogeneous equation; then find a particular solution of the
kkurt [141]

Answer:

Therefore the particular solution of the given differential equation is  

Y(x)=\frac{1}{6} x^2 ln x

Step-by-step explanation:

The given ordinary differential equation is

x^2y"-3xy' +4y=11x^2

If y₁(x) =x² is a solution of ODE then it will be satisfy the ODE

y₁'(x)= 2x and y₁"(x)=2

Putting the value of y₁'(x) and y₁"(x) in x²y"-3xy'+4y=0 we get

x².2-3x.2x+4x²= 2x²-6x²+4x²=0

Therefore y₁(x)  is a solution of the given differential equation.

Again,

y₂(x) =(x²ln x ) is a solution of ODE then it will be satisfy the ODE.

y'_2=2x ln x+ x^2\times\frac{1}{x}

    = 2x ln x+x

y"_2(x)=2x\times \frac{1}{x} +2lnx+1 = 3+2 ln x

Putting the value of y₂'(x) and y₂"(x) in x²y"-3xy'+4y=0 we get

x^2 (3+2 ln x)-3x( 2x ln \ x+x)+4x^2\ ln\ x =0

Therefore  y₂(x) is a solution of  the given differential equation.

The wronskian of y₁(x) and  y₂(x)  is

W(y_1,y_2)(x)=\left|\begin{array}{cc}y_1&y_2\\y'_1&y'_2\end{array}\right|

            =\left|\begin{array}{cc}x^2&x^2 ln x\\2x&2x ln x+x\end{array}\right|

            =x²(2x ln x+x)-x²ln x(2x)

            =2x³ ln x +x³ - 2x³ln x

            =x³≠0

Here g(x)=\frac{y_2(x)}{y_2(x)} = ln x

The particular solution is

Y(x)=- y_1(x)\int\frac{y_2(x).g(x)}{W(y_1,y_2)(x)}dx + y_2(x)\int\frac{y_1(x).g(x)}{W(y_1,y_2)(x)}dx

      =-x^2\int\frac{x^2 ln x . ln x}{x^3} dx+x^2ln x\int \frac{x^2ln x}{x^3} dx                

      =-x^2\int \frac{(lnx)^2}{x} dx+x^2 ln x\int \frac{ln x}{x} dx

       =-x^2\int u^2 du+x^2ln x\int u dx                       Let ln x  =u   \Rightarrow \frac{1}{x} dx=du

      =-x^2 \frac{u^3}{3} +x^2 ln x \frac{u^2}{2}

        =-\frac{x^2(lnx)^3}{3} +\frac{x^2(lnx)^3}{2}

       =\frac{1}{6}x^2 (ln x)^3

Therefore the particular solution of the given differential equation is  

Y(x)=\frac{1}{6} x^2 ln x

     

     

8 0
3 years ago
Other questions:
  • You are selling a mobile app for $10 per user per month.if you get 7 users every month starting with 10 in the first month.how m
    13·1 answer
  • Sven can type 30 words per minute.How many words would he type in 20 minutes?
    14·1 answer
  • What is the answer to 5x-6&gt;x
    6·1 answer
  • M–[(m–n)÷(−2)](−5), if m=−4, n=−6
    12·2 answers
  • Need help please.
    14·1 answer
  • How is the quotient 5 to the 8th power expressed as a power of 5
    10·1 answer
  • A sign company charges $28 per yard for each custom-made banner. Ms.Gill orders two banners that are each 178 yards long, and on
    11·1 answer
  • Find dy/dx of y=csc(square root of x)
    9·1 answer
  • *<br> What's the y-intercept of the following?<br> 4x + 2y = 20
    6·2 answers
  • 3x+8y=15<br> 2x−8y=10<br> Solve for x
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!