1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elenna [48]
3 years ago
5

The perimeter of a square is 4s, where s is the length of one side.

Mathematics
1 answer:
ratelena [41]3 years ago
6 0

Answer:

28ft.

Step-by-step explanation:

If s equals 7 and the perimeter equals 4 times s, then the perimeter would be 4 times 7.

You might be interested in
Determine the length of the line segment shown. line segment from negative 10 comma 9 to 5 comma negative 1 4 units 18 units 19
user100 [1]

The length of the line segment is (b) 18 units

<h3>How to determine the length of the line segment?</h3>

The line segment is given as

ine segment from negative 10 comma 9 to 5 comma negative 1

This can be rewritten as

line segment from (-10, 9) to (5, -1)

The length of the line segment is then calculated using the following distance formula

distance = √[(x₂ - x₁)² + (y₂ - y₁)²]

Where

(x, y) = (-10, 9) to (5, -1)

Substitute the known values in the above equation, so, we have the following representation

Length = √[(-10 - 5)² + (9 + 1)²]

Evaluate

Length = 18

Hence, the length is 18 units

Read more about distance at

brainly.com/question/7243416

#SPJ1

4 0
1 year ago
Read 2 more answers
If an object is shot upward with an initial velocity, v0, in feet per second (ft/s), the velocity, v, in ft/s is given by the fo
disa [49]
Sgeghsgsfsfd Judie navy’s dip



8 0
3 years ago
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
How would this be just the coordinates
Simora [160]

I'm not really sure what you many but I think it's.    (0,2)   and.   (10,0)

5 0
3 years ago
Read 2 more answers
The isotope cobalt-60 has a nuclear mass of 59.933820 u
Lesechka [4]
Cobalt has an atomic number (Z) of 27, which means the nuclei of all its isotopes have 27 protons. Cobalt 60 has an atomic mass of 60, so it has 60-27 = 33 neutrons.

The mass of 27 isolated protons plus the mass of 33 isolated neutrons would be:

27*(1.007825 u) + 33*(1.008665 u) = 60.497220 u

The actual mass of the nucleus of 60-Co is 59.933820 u.

Mass defect: 60.497220 u - 59.933820 u = 0.563400 u

The mass defect is equal to the binding energy of a nucleus.
using the fact that 1 u = 931.5 MeV/c^2

(0.563400 u)*(931.5 MeV/u) = 524.807 MeV

3 0
3 years ago
Other questions:
  • A rectangle has a length of x + 9 and a width of x - 1. Which equation below
    7·1 answer
  • What is the answer 4x&gt;8
    9·1 answer
  • State the domain and range of the function represented by the table.
    10·1 answer
  • Write 75 over 100 in simplest form
    10·2 answers
  • Simplify v^-8*v^-9 write your answer with a positive exponent only
    13·1 answer
  • How do the mouth and stomach play a role in mechanical digestion
    14·1 answer
  • The monthly cost of a certain long distance service is given by the linear function y=0.08x+ 8.95 where Y is in dollars and X is
    7·1 answer
  • Please help me with this!!
    11·2 answers
  • I dont have anything to ask but here is 50 points
    5·2 answers
  • I really need help with this
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!