Answer:
x = 3??
Step-by-step explanation:
The plus-minus sign represents that there are two possible outcomes.
In this case, we have

. When we branch out the possibilities we got 2 values:

and

Those are the roots of this equation. When they ask their product, they want you to multiply both numbers.
When we multiply them:

When we FOIL the we get:

Simplify:


So the product of the two roots of this equation is 6.
The value of z-score for a score that is three standard deviations above the mean is 3.
In this question,
A z-score measures exactly how many standard deviations a data point is above or below the mean. It allows us to calculate the probability of a score occurring within our normal distribution and enables us to compare two scores that are from different normal distributions.
Let x be the score
let μ be the mean and
let σ be the standard deviations
Now, x = μ + 3σ
The formula of z-score is

⇒ 
⇒ 
⇒ 
Hence we can conclude that the value of z-score for a score that is three standard deviations above the mean is 3.
Learn more about z-score here
brainly.com/question/13448290
#SPJ4
The answer is simplified to 15
Answer:
<h2><em>
Three to the three fifths power.</em></h2>
Step-by-step explanation:
The given expression is
![\sqrt{3\sqrt[5]{3} }](https://tex.z-dn.net/?f=%5Csqrt%7B3%5Csqrt%5B5%5D%7B3%7D%20%7D)
To simplify this expression, we have to use a specific power property which allow us to transform a root into a power with a fractional exponent, the property states:
![\sqrt[n]{x^{m}}=x^{\frac{m}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5E%7Bm%7D%7D%3Dx%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D)
Applying the property, we have:
![\sqrt{3\sqrt[5]{3}}=\sqrt{3(3)^{\frac{1}{5}}}=(3(3)^{\frac{1}{5}})^{\frac{1}{2}}](https://tex.z-dn.net/?f=%5Csqrt%7B3%5Csqrt%5B5%5D%7B3%7D%7D%3D%5Csqrt%7B3%283%29%5E%7B%5Cfrac%7B1%7D%7B5%7D%7D%7D%3D%283%283%29%5E%7B%5Cfrac%7B1%7D%7B5%7D%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D)
Now, we multiply exponents:

Then, we sum exponents to get the simplest form:
![3^{\frac{1}{2}}3^{\frac{1}{10}}=3^{\frac{1}{2}+\frac{1}{10}} =3^{\frac{10+2}{20}}=3^{\frac{12}{20}} \\\therefore \sqrt{3\sqrt[5]{3}}=3^{\frac{3}{5} }](https://tex.z-dn.net/?f=3%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D3%5E%7B%5Cfrac%7B1%7D%7B10%7D%7D%3D3%5E%7B%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B10%7D%7D%20%3D3%5E%7B%5Cfrac%7B10%2B2%7D%7B20%7D%7D%3D3%5E%7B%5Cfrac%7B12%7D%7B20%7D%7D%20%20%5C%5C%5Ctherefore%20%5Csqrt%7B3%5Csqrt%5B5%5D%7B3%7D%7D%3D3%5E%7B%5Cfrac%7B3%7D%7B5%7D%20%7D)
Therefore, the right answer is <em>three to the three fifths power.</em>