Answer:
The answer is 162.5
Step-by-step explanation:
you divide 2 by 3 and then figure out how many examples where given to find the average and multiply by that much and you get the answer.
Complete Question
A milling process has an upper specification of 1.68 millimeters and a lower specification of 1.52 millimeters. A sample of parts had a mean of 1.6 millimeters with a standard deviation of 0.03 millimeters. what standard deviation will be needed to achieve a process capability index f 2.0?
Answer:
The value required is
Step-by-step explanation:
From the question we are told that
The upper specification is 
The lower specification is
The sample mean is
The standard deviation is 
Generally the capability index in mathematically represented as
![Cpk = min[ \frac{USL - \mu }{ 3 * \sigma } , \frac{\mu - LSL }{ 3 * \sigma } ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%20%5Cfrac%7BUSL%20-%20%20%5Cmu%20%7D%7B%203%20%2A%20%20%5Csigma%20%7D%20%20%2C%20%20%5Cfrac%7B%5Cmu%20-%20LSL%20%7D%7B%203%20%2A%20%20%5Csigma%20%7D%20%5D)
Now what min means is that the value of CPk is the minimum between the value is the bracket
substituting value given in the question
![Cpk = min[ \frac{1.68 - 1.6 }{ 3 * 0.03 } , \frac{1.60 - 1.52 }{ 3 * 0.03} ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%20%5Cfrac%7B1.68%20-%20%201.6%20%7D%7B%203%20%2A%20%200.03%20%7D%20%20%2C%20%20%5Cfrac%7B1.60%20-%20%201.52%20%7D%7B%203%20%2A%20%200.03%7D%20%5D)
=> ![Cpk = min[ 0.88 , 0.88 ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%200.88%20%2C%200.88%20%20%5D)
So

Now from the question we are asked to evaluated the value of standard deviation that will produce a capability index of 2
Now let assuming that

So

=> 
=> 
So

=> 
Hence
![Cpk = min[ 2, 2 ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%202%2C%202%20%5D)
So

So
is the value of standard deviation required
Answer:
the possible prediction of getting a purple or blue is 2 out of 6
Step-by-step explanation:
(hope this helps can i plz have brainlist :D hehe)
Answer:
this is the correct graph