1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flura [38]
3 years ago
5

Math question please help If you get this right I will mark you as a brainliest

Mathematics
1 answer:
Afina-wow [57]3 years ago
6 0
Ur answer is D 79.84 squared
You might be interested in
A line is perpendicular to y = 4x + 5
ad-work [718]

Answer:

jzjshdjakamkw wjejsna ja w iw wiw wkwjwkęi

8 0
3 years ago
Read 2 more answers
Can someone solve this?
noname [10]

Answer:

\frac{5}{6}, \frac{5}{6}, and "Yes"

Step-by-step explanation:

   We will do as the instructions say.

-> See attached.

5 0
2 years ago
A fair coin is tossed three times.
qaws [65]

B 2/3
A 3/3. Hsheikdkekekekld

6 0
4 years ago
Read 2 more answers
Does anyone know how to do this? I’m confused
nikklg [1K]

Answer:

cos(θ)

Step-by-step explanation:

Para una función f(x), la derivada es el límite de  

h

f(x+h)−f(x)

​

, ya que h va a 0, si ese límite existe.

dθ

d

​

(sin(θ))=(  

h→0

lim

​

 

h

sin(θ+h)−sin(θ)

​

)

Usa la fórmula de suma para el seno.

h→0

lim

​

 

h

sin(h+θ)−sin(θ)

​

 

Simplifica sin(θ).

h→0

lim

​

 

h

sin(θ)(cos(h)−1)+cos(θ)sin(h)

​

 

Reescribe el límite.

(  

h→0

lim

​

sin(θ))(  

h→0

lim

​

 

h

cos(h)−1

​

)+(  

h→0

lim

​

cos(θ))(  

h→0

lim

​

 

h

sin(h)

​

)

Usa el hecho de que θ es una constante al calcular límites, ya que h va a 0.

sin(θ)(  

h→0

lim

​

 

h

cos(h)−1

​

)+cos(θ)(  

h→0

lim

​

 

h

sin(h)

​

)

El límite lim  

θ→0

​

 

θ

sin(θ)

​

 es 1.

sin(θ)(  

h→0

lim

​

 

h

cos(h)−1

​

)+cos(θ)

Para calcular el límite lim  

h→0

​

 

h

cos(h)−1

​

, primero multiplique el numerador y denominador por cos(h)+1.

(  

h→0

lim

​

 

h

cos(h)−1

​

)=(  

h→0

lim

​

 

h(cos(h)+1)

(cos(h)−1)(cos(h)+1)

​

)

Multiplica cos(h)+1 por cos(h)−1.

h→0

lim

​

 

h(cos(h)+1)

(cos(h))  

2

−1

​

 

Usa la identidad pitagórica.

h→0

lim

​

−  

h(cos(h)+1)

(sin(h))  

2

 

​

 

Reescribe el límite.

(  

h→0

lim

​

−  

h

sin(h)

​

)(  

h→0

lim

​

 

cos(h)+1

sin(h)

​

)

El límite lim  

θ→0

​

 

θ

sin(θ)

​

 es 1.

−(  

h→0

lim

​

 

cos(h)+1

sin(h)

​

)

Usa el hecho de que  

cos(h)+1

sin(h)

​

 es un valor continuo en 0.

(  

h→0

lim

​

 

cos(h)+1

sin(h)

​

)=0

Sustituye el valor 0 en la expresión sin(θ)(lim  

h→0

​

 

h

cos(h)−1

​

)+cos(θ).

cos(θ)

5 0
3 years ago
Read 2 more answers
Any idea on this please help
qwelly [4]
I think it might be 72+0?
8 0
4 years ago
Read 2 more answers
Other questions:
  • A rectangular pool is 30 1/3 feet long and 12 1/2 feet wide. What is the area of the pool?
    8·2 answers
  • The sum of 8 times a number and 7 equals 9!
    9·1 answer
  • Can someone please help me with this math question.It is,When Pascal built a dog house,he knew he wanted the floor of the house
    8·1 answer
  • 2,761 x 2 ?????????????????????????????????????
    8·2 answers
  • What is the area of the regular octagon below?
    10·2 answers
  • PLZ HELPPPPPPPPPPPPPP​
    9·1 answer
  • What is the common difference for this arithmetic sequence?
    8·1 answer
  • SRRY IK LAST QUESTION FOR REAL THIS TIME
    5·1 answer
  • Plzz help asp need really smart peeps
    13·1 answer
  • What algebraic expression is a product with a factor of 5
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!