Answer:
Carbohydrates are used by the body for energy and structural support in cell walls of plants and exoskeletons of insects and crustaceans. They are made of smaller subunits called monosaccharides. Monosaccharides have <u>carbon</u>, <u>hydrogen</u>, and <u>oxygen</u> in a 1:2:1 ratio.
Difinition of disaccharides: any of a class of sugars whose molecules contain two monosaccharide residues.
Make an example...
Short carbohydrate chains are called <u>oligosaccharides</u> and contain 3 to 10 sugar molecules. Long carbohydrate chains can contain hundreds or even thousands of monosaccharide units. molecule of <u>glucose</u> and one molecule of <u>fructose</u> joined together.
Explanation:
Enjoy
The fossil records of primitive plants show a variety of seed dispersal mechanisms that has been adopted by plants at various stages and how they have evolved. The most primitive of this seed dispersal mechanism is the Anemochory
Anemochory is the dispersal of seed through the wind. The seeds have wing like structures and are lightweight to be able to fly away with the wind. They are dull colored and are pale that will prevent the seed from being visible.
Hydrochory is the next order of evolution of the seed dispersal mechanism which became majorly adopted by plants that tend to grow near water sources and those whose seeds are too heavy to fly in the air. One of the best examples is the coconut that falls off on the sea water in the coastal areas and floats to other lands and sprouts to a new plant.
Barochory is the dispersal of the seed through gravity. This is the mechanism where the fruit falls off to the ground due to gravity and grows into a new plant.
Endozochory is the dispersal of the seed through animals. In this case the seed is usually covered with a fleshy edible part which is consumed by the animals and in this process the seed goes into the digestive system of the animal and is excreted in a different place from where the seed can sprout into a new plant.
Ballochory is the dispersal of the seed due to the forceful ejection of the seed by explosive dehiscence of the seed. This lets the plant to place its seeds in a distant area. One of the best examples is the Hura Crepitans which is also called the dynamite tree, named after its exploding fruits.
Answer:
Plants need water, warmth, nutrients from the soil, and light to continue to grow.
Explanation:
hope this helps
plz mark brainliest
Well I'm not exactly certain where the teacher is going with this, but an often used example is red blood cells (RBCs) aka: erythrocytes.
RBCs are suspended in blood plasma as they flood through vessels around and around the body, so the osmolarity (amount of small particles that affect osmosis) must remain relatively constant. This is termed "isotonic", meaning the same amount of osmosis-influencing particles that are there inside the RBCs' cytosol, within their plasma membranes.
If the plasma osmolarity get too high, called hypertonic (as with extra salt particles) then water inside the RBCs will have an osmotic force driving it out of the cells' membranes, to flow where there are more salt particles. This will lead to cell shrinkage (called "crenation").
Counter to that, if the plasma osmolarity gets too low, as due to low plasma salt with excessive water intake (for example from the condition "water intoxication"), then the plasma will be hypotonic with respect to the intracellular cytosol concentration. This can result in water rushing into the RBCs' membranes via osmosis, causing the cells to swell from discs into spheres (balls), or even rupture and burst (a phenomenon called "hemolysis").
HOPE THOSE EXAMPLES HELP!!