1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gelneren [198K]
4 years ago
12

Given below are seven observations collected in a regression study on two variables, x (independent variable) and y (dependent v

ariable). Develop the least squares estimated regression equation. What is the coefficient of determination? x y 2 12 3 9 6 8 7 7 8 6 7 5 9 2

Mathematics
1 answer:
natka813 [3]4 years ago
6 0

Answer:

Step-by-step explanation:

Hello!

Given the independent variable X and the dependent variable Y (see data in attachment)

The regression equation is

^Y= b₀ + bX

Where

b₀= estimation of the y-intercept

b= estimation of the slope

The formulas to manually calculate both estimations are:

b= \frac{sumXY-\frac{(sumX)(sumY)}{n} }{sumX^2-\frac{(sumX)^2}{n} }

b_0= \frac{}{y} - b*\frac{}{x}

n=7

∑X= 42

∑X²= 292

∑Y= 49

∑Y²= 403

∑XY= 249

\frac{}{y} = \frac{sumY}{n} = \frac{49}{7} = 7

\frac{}{x} = \frac{sumX}{n} = \frac{42}{7} = 6

b= \frac{249-\frac{42*49}{7} }{292-\frac{42^2}{7} }= -1.13

b_0= 7- (-1.13)*6= 13.75

^Y= 13.75 - 1.13X

Using the raw data you can calculate the coefficient of determination as:

R^2= \frac{b^2[sumX^2-\frac{(sumX)^2}{n} ]}{[sumY^2-\frac{(sumY)^2}{n} ]}

R^2= \frac{(-1.13)^2[292-\frac{(42)^2}{7} ]}{[403-\frac{(49)^2}{7} ]}= 0.84

This means that 84% of the variability of the dependent variable Y is explained by the response variable X under the model ^Y= 13.75 - 1.13X

I hope this helps!

You might be interested in
Test the series for convergence or divergence (using ratio test)​
Triss [41]

Answer:

    \lim_{n \to \infty} U_n =0

Given series is convergence by using Leibnitz's rule

Step-by-step explanation:

<u><em>Step(i):-</em></u>

Given series is an alternating series

∑(-1)^{n} \frac{n^{2} }{n^{3}+3 }

Let   U_{n} = (-1)^{n} \frac{n^{2} }{n^{3}+3 }

By using Leibnitz's rule

   U_{n} - U_{n-1} = \frac{n^{2} }{n^{3} +3} - \frac{(n-1)^{2} }{(n-1)^{3}+3 }

 U_{n} - U_{n-1} = \frac{n^{2}(n-1)^{3} +3)-(n-1)^{2} (n^{3} +3) }{(n^{3} +3)(n-1)^{3} +3)}

Uₙ-Uₙ₋₁ <0

<u><em>Step(ii):-</em></u>

    \lim_{n \to \infty} U_n =  \lim_{n \to \infty}\frac{n^{2} }{n^{3}+3 }

                       =  \lim_{n \to \infty}\frac{n^{2} }{n^{3}(1+\frac{3}{n^{3} } ) }

                    = =  \lim_{n \to \infty}\frac{1 }{n(1+\frac{3}{n^{3} } ) }

                       =\frac{1}{infinite }

                     =0

    \lim_{n \to \infty} U_n =0

∴ Given series is converges

                       

                     

 

3 0
3 years ago
5/8 + -3/4 i don’t know this
Deffense [45]

Answer:

-0.125

Step-by-step explanation:

6 0
4 years ago
Eli had 20 lemons. He used an equal number in each of 3 pitchers of lemonade. He has 2 lemons left. How many lemons did Eli use
Sidana [21]

Answer: he used 6 lemons for each pitcher so answer is =6

3 0
4 years ago
Solve ((9-2)^2)^3/(4+3)^5
Alenkasestr [34]
=(7^2)^3/7^5
=7^6/7^5
=7
8 0
3 years ago
84.47 is 115% of what number
NISA [10]
155% of X = 84.47
1.55 of X = 84.47
X= 84.47/1.55
X=54.49 Answer
7 0
3 years ago
Other questions:
  • Show that the number 6 is a rational number by finding a ratio of two integers equal to the number.
    12·1 answer
  • What is 8x2/3 as a mixed number
    14·2 answers
  • 0.2cubed + (1/5 * 3/4) - 1/12
    15·1 answer
  • Serena estimates that she can paint 60 square feet of wall space every half-hour. Write an equation for the relationship with ti
    15·2 answers
  • Can I get help with this? Thanks! :)
    6·1 answer
  • What’s the correct answer for this?
    10·1 answer
  • What percent of 120 is 42
    7·2 answers
  • Christa wants to put a fence
    13·1 answer
  • Please help I'll mark brainliest
    9·2 answers
  • A water polo team threw a pizza party after winning the championship. They needed enough pizza for 72 people. Each pizza serves
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!