1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Salsk061 [2.6K]
3 years ago
11

HELP ME PLEASE! What is the measure of the radius of the cone in a diagram below?

Mathematics
2 answers:
nevsk [136]3 years ago
6 0

Answer:

Radius of cone in the diagram is:

4 cm

Step-by-step explanation:

As we can clearly see from the figure that diameter of cone is 8 cm

and we know that radius is half of diameter i.e.

radius=\dfrac{diameter}{2}

Hence, radius=\dfrac{8}{2}

i.e. radius=4 cm

Hence, radius of cone in the diagram is:

4 cm

Serjik [45]3 years ago
5 0

Answer:

B) 4cm

Step-by-step explanation:

on edge

You might be interested in
Write an equation in standard form for the line that passes through the point (2,-3) and is perpendicular to the line y + 4 = -2
sineoko [7]

For this case we have that by definition, the standard form of a linear equation is given by:

ax + by = c

By definition, if two lines are perpendicular then the product of their slopes is -1. That is to say:

m_ {1} * m_ {2} = - 1

We have the following point-slope equation of a line:

y+4 = -\frac {2} {3}(x-12)

The slope is:

m_ {1} = - \frac {2} {3}

We find the slope m_ {2}of a perpendicular line:

m_ {2} = \frac {-1}{m_ {1}}\\m_ {2} = \frac {-1} {-\frac {2} {3}}\\m_ {2} = \frac{3} {2}

Thus, the equation is of the form:

y-y_ {0} = \frac {3} {2} (x-x_ {0})

We have the point through which the line passes:

(x_ {0}, y_ {0}) :( 2, -3)

Thus, the equation is:

y - (- 3) = \frac {3} {2} (x-2)\\y + 3 = \frac {3} {2} (x-2)

We manipulate algebraically:

y + 3 = \frac{3} {2} x- \frac {3} {2} (2)\\y + 3 = \frac{3} {2} x-3

We add 3 to both sides of the equation:

y + 3 + 3 = \frac {3} {2} x\\y + 6 = \frac {3} {2} x

We multiply by 2 on both sides of the equation:

2(y + 6) = 3x\\2y + 12 = 3x

We subtract 3x on both sides:

2y-3x + 12 = 0

We subtract 12 from both sides:

2y-3x = -12

ANswer:

-3x + 2y = -12

5 0
2 years ago
¿Cuál es el valor de 0.1561 redondeado a la décima más cercana?
Alik [6]

Answer: 0.2

Step-by-step explanation: Necesitamos ajustar la estimación de 0.1561 al décimo más cercano.

El número después del decimal es el número en el décimo lugar. Considere el número a un lado del lugar de las décimas y utilice el número para decidir si se reunirán o seguirán siendo el equivalente. Observe que el número a un lado del décimo lugar es mayor o equivalente a 5 o menos de 5. En el caso de que ese número sea más digno de mención o equivalente a 5, en ese punto el número se reunirá aún en la remota posibilidad de que ese número es menor de 5, en ese momento el número no se reunirá. Permanecerá igual.

Consideremos el número dado 0.1561

El número en el lugar de las décimas es 1

El número después del punto de las décimas es 5 (que es más prominente o equivalente a 5)

De esta manera, el número se reunirá en 0,2

3 0
3 years ago
Y + 4/9 = 2/3 Solve the equation..
emmainna [20.7K]
Y + 4/9 = 2/3

Let's convert 2/3 into 6/9 so it will be easier to subtract.

Y + 4/9 = 6/9
Subtract 4/9 on both sides.

Y = 2/9 Hope this helps!
4 0
2 years ago
HELPPPPPPPP ASAPPPPP PLSSSS
balu736 [363]
The answer to this should be 101!
7 0
2 years ago
A business was valued at £80000 at the start of 2013. In 5 years the value of this business raised to £95000. this is equivalent
Yuri [45]

the yearly increase of x% assumes is compounding yearly, so let's use that.

~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\dotfill &\£95000\\ P=\textit{original amount deposited}\dotfill &\£80000\\ r=rate\to r\%\to \frac{r}{100}\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{yearly, thus once} \end{array}\dotfill &1\\ t=years\dotfill &5 \end{cases}

95000=80000\left(1+\frac{~~ \frac{r}{100}~~}{1}\right)^{1\cdot 5}\implies \cfrac{95000}{80000}=\left( 1+\cfrac{r}{100} \right)^5 \\\\\\ \cfrac{19}{16}=\left( 1+\cfrac{r}{100} \right)^5\implies \sqrt[5]{\cfrac{19}{16}}=1+\cfrac{r}{100}\implies \sqrt[5]{\cfrac{19}{16}}=\cfrac{100+r}{100} \\\\\\ 100\sqrt[5]{\cfrac{19}{16}}=100+r\implies 100\sqrt[5]{\cfrac{19}{16}}-100=r\implies 3.5\approx r

4 0
2 years ago
Other questions:
  • Mrs. sim bought 5m of cloth. She cut into 7 equal pieces. What is the length of each pieces of cloth? Give your answer to one de
    12·2 answers
  • Find the distance between (-1,2) and (2,-3)
    9·1 answer
  • Can someone pless help me on this its due by 12:00am tonight
    14·2 answers
  • BRAINLIEST!!PLEASE HELP ME!!
    12·1 answer
  • The summation of 1 to infinity of n - 2 is which of the following series?-2, -4, -6, -8, . . .-2, -1, 0, 1, . . .-1, 0, 1, 2, .
    5·1 answer
  • Jamal hiked on two trails. That first trail was 5 1/3 miles long, and the second trail was 1 3/4 times as long as the first trai
    14·1 answer
  • Will records the wins and losses for his high school basketball team each year. He notices that the ratio of wins to losses has
    7·1 answer
  • O.12 rouded to nearest tenth
    7·2 answers
  • I need this question in order to finish! Please help
    8·1 answer
  • RS=7y+4, ST=3y+6, and RT=90
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!