1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lozanna [386]
4 years ago
6

Are these permutation or combination problems?

Mathematics
1 answer:
kodGreya [7K]4 years ago
8 0

Answer:

1. 63,960 total permutations

2. 24 or 64

Step-by-step explanation:

They are permutation problems, because the order of the elements matter (because 1-2-3 is different than 3-2-1).

In a combination, the order of the elements don't matter (so, 1-2-3 is the same as 3-2-1).

1. Lock combination.

You can choose from 41 different numbers and you have to pick 3. The formula is:

P(n,r) = \frac{n!}{(n-r)!} = \frac{41!}{(41-3)!} = 63960

Where n is the total numbers possible (41) and r is the quantity of numbers you have to pick (3).

For the first number, you can choose from 41 different numbers, so there are 41 possibilities.

For the second number, you cannot choose the same as the first one, so you are now limited to 40 possibilities.

For the third number, you are down to 39 possibilities since you cannot pick the same as the first two ones.

So, you have 41 * 40 * 39 = 63,960 possibilities in total.

2. Construct a 3-digit number from digits 4,6,8,9

This question doesn't specify if you can pick the same digit twice or not.

If you cannot, then the same formula as above applies:

P(n,r) = \frac{n!}{(n-r)!} = \frac{4!}{(4-3)!} = 24

Where n is the total numbers possible (4) and r is the quantity of numbers you have to pick (3).

If you can choose the same digit twice, then the formula is:

n^{r} = 4^{3} = 64

64 different numbers if you can pick the same number twice... which is logic since for the first number you have a choice among 4, same for the second and third number... so 4 * 4 * 4 = 64.

You might be interested in
Could yall answer 3 and 7 please!
juin [17]
3. I think it’s A but 7. I know it’s D for sure
6 0
3 years ago
Read 2 more answers
Find the area of the region enclosed by the graphs of these equations. (CALCULUS HELP)
sergiy2304 [10]

Answer:

\displaystyle A = \frac{20\sqrt{15}}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Graphing
  • Exponential Rule [Root Rewrite]:                                                                   \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Area - Integrals

U-Substitution

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

F: y = √(15 - x)

G: y = √(15 - 3x)

H: y = 0

<u>Step 2: Find Bounds of Integration</u>

<em>Solve each equation for the x-value for our bounds of integration.</em>

F

  1. Set <em>y</em> = 0:                                                                                                         0 = √(15 - x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 15

G

  1. Set y = 0:                                                                                                         0 = √(15 - 3x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - 3x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -3x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 5

This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.

We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).

<u>Step 3: Find Area of Region</u>

<em>Integration Part 1</em>

  1. Rewrite Area of Region Formula [Integration Property - Subtraction]:     \displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx
  2. [Integral] Substitute in variables and limits [Area of Region Formula]:     \displaystyle A = \int\limits^{15}_0 {\sqrt{15 - x}} \, dx - \int\limits^5_0 {\sqrt{15 - 3x}} \, dx
  3. [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:                       \displaystyle A = \int\limits^{15}_0 {(15 - x)^{\frac{1}{2}}} \, dx - \int\limits^5_0 {(15 - 3x)^{\frac{1}{2}}} \, dx

<u>Step 4: Identify Variables</u>

<em>Set variables for u-substitution for both integrals.</em>

Integral 1:

u = 15 - x

du = -dx

Integral 2:

z = 15 - 3x

dz = -3dx

<u>Step 5: Find Area of Region</u>

<em>Integration Part 2</em>

  1. [Area] Rewrite [Integration Property - Multiplied Constant]:                       \displaystyle A = -\int\limits^{15}_0 {-(15 - x)^{\frac{1}{2}}} \, dx + \frac{1}{3}\int\limits^5_0 {-3(15 - 3x)^{\frac{1}{2}}} \, dx
  2. [Area] U-Substitution:                                                                                   \displaystyle A = -\int\limits^0_{15} {u^{\frac{1}{2}}} \, du + \frac{1}{3}\int\limits^0_{15} {z^{\frac{1}{2}}} \, dz
  3. [Area] Reverse Power Rule:                                                                         \displaystyle A = -(\frac{2u^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15} + \frac{1}{3}(\frac{2z^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                   \displaystyle A = -(-10\sqrt{15}) + \frac{1}{3}(-10\sqrt{15})
  5. [Area] Multiply:                                                                                               \displaystyle A = 10\sqrt{15} + \frac{-10\sqrt{15}}{3}
  6. [Area] Add:                                                                                                     \displaystyle A = \frac{20\sqrt{15}}{3}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Area Under the Curve - Area of a Region (Integration)

Book: College Calculus 10e

3 0
3 years ago
Pls answer with steps and using indentitie​
matrenka [14]
The answer and the process is shown in the following picture

5 0
3 years ago
Lorna starts counting at 48. she counts on by 10s four times. then she counts on by 1s three time. what was the last. number she
iogann1982 [59]

Answer: 91


Step-by-step explanation:

10x4 =40

1x3 = 3

40+3+48=91



4 0
3 years ago
Does any one know what midpoint is
Rainbow [258]

Answer:

it means the middle of the points

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Find the product enter answer below
    13·2 answers
  • 5 mangoes cost $25. what will 20 mangoes cost?
    15·2 answers
  • A regular 24-sided polygon is rotated with its center of rotation at its center.
    5·2 answers
  • Find the inverse 2x+6/5
    10·1 answer
  • A cell phone plan has a basic charge of $40 a month. The plan includes 600 free minutes and charges 10 cents for each additional
    9·1 answer
  • Solve for b 4a=2b-7
    15·2 answers
  • Find the equation of the line that is parallel to y=4/3x-8 that goes through (9,16)
    8·1 answer
  • Triangle A B C is shown. Side A C has a length of 27. Side C B has a length of 54.
    12·2 answers
  • A store is having a sale on almonds and jelly beans. For 6 pounds of almonds and 2 pounds of jelly beans, the total cost is 20.
    5·1 answer
  • Does anyone know ill give brainliest answer if you know
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!