Answer:
a = 
Step-by-step explanation:
Using Pythagoras' identity in the right triangle.
The square on the hypotenuse is equal to the sum of the squares on the other 2 sides, that is
a² + 9² = 12²
a² + 81 = 144 ( subtract 81 from both sides )
a² = 63 ( take square root of both sides )
a = 
Answer:
45.1feet
Step-by-step explanation:
Given the following
∠I=90°
∠G=62°, and
GH = 96 feet = Hypotenuse
Required
IG = Adjacent side
Using the SOH CAH TOA identity
Cos theta = Adj/hyp
Cos 62 =IG/96
IG = 96cos62
IG = 96(0.4695)
IG = 45.1feet
Hence the length of IG to the nearest tenth is 45.1feet
Answer:
60 t0 12, or 1:5, or 1/5
Step-by-step explanation:
Answer:
289
Step-by-step explanation:
Raise 17 to the power of 2
Is this what you are asking for