Answer:
? = 26 in
Step-by-step explanation:
Using Pythagoras' identity in the right triangle.
The square on the hypotenuse is equal to the sum of the squares on the other 2 sides, that is
?² = 24² + 10² = 576 + 100 = 676 ( take the square root of both sides )
? =
= 26
Answer:
See the proof below
Step-by-step explanation:
Let the line AB be a straight line on the parallelogram.
A dissection of the line (using the perpendicular line X) gives:
AY ≅ BX
Another way will be using the angles.
The angles are equal - vertically opposite angles
Hence the line AY ≅ BX (Proved)
Answer:
a) For the first part we have a sample of n =10 and we want to find the degrees of freedom, and we can use the following formula:

d.9
b) 
a.15
c) For this case we have the sample size n = 25 and the sample variance is
, the standard error can founded with this formula:

Step-by-step explanation:
Part a
For the first part we have a sample of n =10 and we want to find the degrees of freedom, and we can use the following formula:

d.9
Part b
From a sample we know that n=41 and SS= 600, where SS represent the sum of quares given by:

And the sample variance for this case can be calculated from this formula:

a.15
Part c
For this case we have the sample size n = 25 and the sample variance is
, the standard error can founded with this formula:

Step-by-step explanation:

This is your answer
Answer:
c
Step-by-step explanation: