1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexus [3.1K]
3 years ago
10

Factor the expression 9x + 15.

Mathematics
2 answers:
8090 [49]3 years ago
7 0

Answer:

3.  

✔ 3(3x + 5)

Is the answer

Step-by-step explanation:

Sophie [7]3 years ago
6 0

Answer:

(9x + 15) = 3(3x + 5)

This is basically the distributive property of multiplication.

Step-by-step explanation:

We have to factorize the expression (9x + 15).

Now, 3 is the GCF of 9x and 15.

So, divide 9x by 3 and we will get \frac{9x}{3} = 3x and divide 15 by 3 and we will get \frac{15}{3} = 5.

Now, sum the results as (3x + 5).

Then express the factorized term as the product of (3x + 5) and 3

i.e. (9x + 15) = 3(3x + 5)

So, this is basically the distributive property of multiplication. (Answer)

You might be interested in
Help me answer these <br><br> please will give brainlst
IceJOKER [234]

Answer:

7. (-1, 10)

8. (7,-6)

9. C

10. One solution, Infinitely Many Solutions, No Solution

11. Adult tickets: 52 Student tickets: 68

6 0
3 years ago
WILL MARK BRAINLIEST HELP ASAP ASAP
KATRIN_1 [288]

Answer:

A. 3/2

Step-by-step explanation:

When two exponents have the same base, you can cancel the bases and set the exponents equal to each other

3x-2=x+1

3x=x+3

2x=3

x=3/2

3 0
3 years ago
Read 2 more answers
Write an inequality and use substitution to solve the following problem:
nekit [7.7K]

They already spent $2000, and they only had $5100

Subtract

5100 - 2000 = 3100

$3,050 is your answer, because it is the only one that is less than 3100

hope this helps

7 0
3 years ago
1. cot x sec4x = cot x + 2 tan x + tan3x
Mars2501 [29]
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
5 0
3 years ago
A circle has the equation x2+ y2 = 9. What is the length of the radius?
Zarrin [17]

Answer:

The center is (0,0) and the radius is 3

Step-by-step explanation:

The equation of a circle is given by

(x-h)^2+(y-k)^2 = r^2

Where (h,k) is the center and r is the radius

(x-0)^2+(y-0)^2 = 3^2

The center is (0,0) and the radius is 3

3 0
3 years ago
Read 2 more answers
Other questions:
  • A law clerk has earned more than $20000 since being hired (it's a math inequality problem)
    6·1 answer
  • X · 1 + x/1 = _____.
    10·1 answer
  • What’s the answering need help
    7·2 answers
  • Evaluate y5 for y = 1.<br> 1<br> 5<br> 15
    13·1 answer
  • ...!!.!.!.!.!.!.!.!.!.!.!.!.
    8·2 answers
  • What is 5r^2 = 80<br><br> It says solve each equation with the quadratic formula.
    15·1 answer
  • Susie has 8/9 cup of ice cream. How many 1/4 cup servings can she make?
    7·1 answer
  • 5÷921 with a remainder
    14·2 answers
  • Jason is making a fruit salad. He mixes in 3 1/4 cups of orange melon and 2 2/3 cups of green melon. How many cups of melon does
    7·1 answer
  • First person to answer both of these will get 10 points and Brainliest. But your answer has to be correct!​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!