The solution is x=-4, y=-2
Answer:B
Step-by-step explanation:
For the first one the nth term is 9n - 8 so the 10th term is 9x10 - 8 = 90-8 = 82
For the second one the nth term is ⅓n + ⅓ so the 11th term is ⅓x11 +⅓ = 3.9999 = 4
Answer:
Y = negative x + 9
Step-by-step explanation:
Find the equation of the line for side S-
m= 4-1/1-4 = 3/-3 = -1
<u>The Gradient is -1</u>
Since parallel lines share the same gradient, it should be either of the first two options.
We can see side Q shares the same gradient: 3-6/6-3= -1
Find the equation of the line of side Q-
y-y1= m(x-x1)
y-6= -1(x-3)
y-6=-x+3
<u>y= -x+9</u>
Answer:

Step-by-step explanation:
The volume of the solid revolution is expressed as;

Given y = 2x²
y² = (2x²)²
y² = 4x⁴
Substitute into the formula
![V = \int\limits^2_0 {4\pi x^4} \, dx\\V =4\pi \int\limits^2_0 { x^4} \, dx\\V = 4 \pi [\frac{x^5}{5} ]\\](https://tex.z-dn.net/?f=V%20%3D%20%5Cint%5Climits%5E2_0%20%7B4%5Cpi%20x%5E4%7D%20%5C%2C%20dx%5C%5CV%20%3D4%5Cpi%20%5Cint%5Climits%5E2_0%20%7B%20x%5E4%7D%20%5C%2C%20dx%5C%5CV%20%3D%204%20%5Cpi%20%5B%5Cfrac%7Bx%5E5%7D%7B5%7D%20%5D%5C%5C)
Substituting the limits
![V = 4 \pi ([\frac{2^5}{5}] - [\frac{0^5}{5}])\\V = 4 \pi ([\frac{32}{5}] - 0)\\V = 128 \pi/5 units^3](https://tex.z-dn.net/?f=V%20%3D%204%20%5Cpi%20%28%5B%5Cfrac%7B2%5E5%7D%7B5%7D%5D%20-%20%5B%5Cfrac%7B0%5E5%7D%7B5%7D%5D%29%5C%5CV%20%3D%204%20%5Cpi%20%28%5B%5Cfrac%7B32%7D%7B5%7D%5D%20-%200%29%5C%5CV%20%3D%20128%20%5Cpi%2F5%20units%5E3)
Hence the volume of the solid is 