29-11=18
18²+18²=p²
324+324=p²
p²=648
p=18√2
That's your answer.
Answer:
The Least Common Denominator of 3/4, 4/5 and 2/3
Would be,
4 × 5 × 3 = 60
<em><u>Hence</u></em><em><u>,</u></em>
<em><u>60</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>L.C.D</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>3</u></em><em><u>/</u></em><em><u>4</u></em><em><u>,</u></em><em><u> </u></em><em><u>4</u></em><em><u>/</u></em><em><u>5</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>2</u></em><em><u>/</u></em><em><u>3</u></em>
Answer:
The answer is 19
Step-by-step explanation:
I'm pretty sure the answer is 19
We develop an equation for the given situation by first writing the general equation for lines,
y = mx + b
Substituting to this given the values given above,
(1990) 430 = b
(2000) 400 = m(10) + 430
The value of m from the equation in 2000 is -3. Thus, the equation of that relates the variables is,
y = -3x + 430
Actually, when you know 2 sides and an included angle, you use the Law of Cosines. (and we don't know if theta is an included angle).
Solving for side c
c^2 = a^2 + b^2 -2ab * cos(C)
c^2 = 36 + 16 - 2*6*4 * cos(60)
c^2 = 52 -48*.5
c^2 = 28
c = 5.2915
Using the Law of Sines
side c / sin(C) = side b / sin (B)
5.2915 / sin(60) = 4 / sin (B)
sin(B) = sin(60) * 4 / 5.2915
sin(B) = 0.86603 * 4 / 5.2915
<span><span>sin(B) = 3.46412
</span>
/ 5.2915
</span>
<span><span><span>sin(B) = 0.6546571451
</span>
</span>
</span>
Angle B = 40.894 Degrees
sin (A) / side a = sin (B) / side b
sin (A) = 6 * sin (40.894) / 4
sin (A) = 6 * 0.65466 / 4
sin (A) = .98199
angle A = 79.109 Degrees
angle C = 60 Degrees