Answer:
The sum of first 4n terms is -10n.
Step-by-step explanation:
The formula for sum of n terms of an AP is
![S_n=\frac{n}{2}[2a+(n-1)d]](https://tex.z-dn.net/?f=S_n%3D%5Cfrac%7Bn%7D%7B2%7D%5B2a%2B%28n-1%29d%5D)
It is given that the sum of the first n terms of an A. P. is 2n and the sum of the first 2n terms is n.
![\frac{n}{2}[2a+(n-1)d]=2n](https://tex.z-dn.net/?f=%5Cfrac%7Bn%7D%7B2%7D%5B2a%2B%28n-1%29d%5D%3D2n)
..... (1)
![\frac{2n}{2}[2a+(2n-1)d]=n](https://tex.z-dn.net/?f=%5Cfrac%7B2n%7D%7B2%7D%5B2a%2B%282n-1%29d%5D%3Dn)
..... (2)
Solve equation (1) and (2) by elimination method.


The sum of first 4n terms is
![S_{4n}=\frac{4n}{2}[2a+(4n-1)d]](https://tex.z-dn.net/?f=S_%7B4n%7D%3D%5Cfrac%7B4n%7D%7B2%7D%5B2a%2B%284n-1%29d%5D)
![S_{4n}=2n[2a+(4n-1)d]](https://tex.z-dn.net/?f=S_%7B4n%7D%3D2n%5B2a%2B%284n-1%29d%5D)
Put the value of a and d.
![S_{4n}=2n[2(\frac{1}{2}(7-\frac{3}{n}))+(4n-1)(-\frac{3}{n})]](https://tex.z-dn.net/?f=S_%7B4n%7D%3D2n%5B2%28%5Cfrac%7B1%7D%7B2%7D%287-%5Cfrac%7B3%7D%7Bn%7D%29%29%2B%284n-1%29%28-%5Cfrac%7B3%7D%7Bn%7D%29%5D)
![S_{4n}=2n[7-\frac{3}{n}-12+\frac{3}{n}]](https://tex.z-dn.net/?f=S_%7B4n%7D%3D2n%5B7-%5Cfrac%7B3%7D%7Bn%7D-12%2B%5Cfrac%7B3%7D%7Bn%7D%5D)
![S_{4n}=2n[-5]](https://tex.z-dn.net/?f=S_%7B4n%7D%3D2n%5B-5%5D)

Therefore the sum of 4n terms is -10n.