Answer: 0.0475
Step-by-step explanation:
Let x = random variable that represents the number of a particular type of bacteria in samples of 1 milliliter (ml) of drinking water, such that X is normally distributed.
Given: 
The probability that a given 1-ml will contain more than 100 bacteria will be:
![P(X>100)=P(\dfrac{X-\mu}{\sigma}>\dfrac{100-85}{9})\\\\=P(Z>1.67)\ \ \ \ [Z=\dfrac{X-\mu}{\sigma}]\\\\=1-P(Zz)=1-P(Z](https://tex.z-dn.net/?f=P%28X%3E100%29%3DP%28%5Cdfrac%7BX-%5Cmu%7D%7B%5Csigma%7D%3E%5Cdfrac%7B100-85%7D%7B9%7D%29%5C%5C%5C%5C%3DP%28Z%3E1.67%29%5C%20%5C%20%5C%20%5C%20%5BZ%3D%5Cdfrac%7BX-%5Cmu%7D%7B%5Csigma%7D%5D%5C%5C%5C%5C%3D1-P%28Z%3C1.67%29%5C%20%5C%20%5C%20%5BP%28Z%3Ez%29%3D1-P%28Z%3Cz%29%5D%5C%5C%5C%5C%3D1-%200.9525%3D0.0475)
∴The probability that a given 1-ml will contain more than 100 bacteria
0.0475.
Answer:
The correct answer is B
Step-by-step explanation:
Both of their medians are equal and Ami's range is larger than Lolo's range :)
Answer:
3x - y = 10
Step-by-step explanation:
y-5 = 3(x-5)
y - 5 = 3x-15
-3x+y= -10
3x - y = 10
Answer: Hi!
First, UxV = sin(a)*IUI*IVI
where a is the angle between U and V, in this case 45°.
First, the cross product of UxV points:
Here you can use the right hand method,
Put your hand flat, so the point of your fingers point in the same direction that the first vector, in this case U, so your fingers will point to the north.
Now roll your fingers in the direction of the second vector, so here you will roll your fingers in the northeast direction. Now you will see that your thumb is pointing down, so the cross product of UxV points down.
And the magnitude is 6*5*sin(45) = 21.213
PLS HELP ME ASAP I DONT HAVE TIME. IT ALSO DETECTS IF ITs RIGHT OR WRONG. PLS HELP ME ASAP I DONT HAVE TIME. IT ALSO DETECTS IF ITs RIGHT OR WRONG.