Common factors of 12 and 24 include 2,3,4,6, and 12
Answer:
![\sqrt{5}\cdot\sqrt[3]{5} =\sqrt[6]{5^3} \cdot\sqrt[6]{5^2} =\sqrt[6]{5^5} =5^{(5/6)}](https://tex.z-dn.net/?f=%5Csqrt%7B5%7D%5Ccdot%5Csqrt%5B3%5D%7B5%7D%20%3D%5Csqrt%5B6%5D%7B5%5E3%7D%20%5Ccdot%5Csqrt%5B6%5D%7B5%5E2%7D%20%3D%5Csqrt%5B6%5D%7B5%5E5%7D%20%3D5%5E%7B%285%2F6%29%7D)
Step-by-step explanation:
The rules of exponents apply, even when they are fractional exponents:
![a^b\cdot a^c=a^{b+c}\\\\\sqrt[b]{x^a}=x^{(a/b)}](https://tex.z-dn.net/?f=a%5Eb%5Ccdot%20a%5Ec%3Da%5E%7Bb%2Bc%7D%5C%5C%5C%5C%5Csqrt%5Bb%5D%7Bx%5Ea%7D%3Dx%5E%7B%28a%2Fb%29%7D)
Answer:
1+7+8+8
Step-by-step explanation:
Answer:
24mm
Step-by-step explanation:
since it's a similar triangle, we solve;
EH/EG=DH/DG
EH=56mm;
EG=44.8mm;
DH=35mm;
DG=X+4.
Fix them,
56/44.8=35/x+4
cross multiply
56(x+4)=35×44.8
56x+224=1,568
collect the like term
56x=1,344
divide via by 56
56x/56=1344/56
x=24mm
Check/ verify
EH/EG=DH/DG
56/44.8=35/24+4
56/44.8=35/28
CROSS MULTIPLY OVER THE EQUAL SIGN.
56×28=35×44.8
1,568=1,568
THAT'S CORRECT.