Answer:
The probability that the student's IQ is at least 140 points is of 55.17%.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
University A: 
a) Select a student at random from university A. Find the probability that the student's IQ is at least 140 points.
This is 1 subtracted by the pvalue of Z when X = 140. So



has a pvalue of 0.4483.
1 - 0.4483 = 0.5517
The probability that the student's IQ is at least 140 points is of 55.17%.
It is based on powers of 10, making it logical.
Answer:
-3
Step-by-step explanation:
y=mx+ b
m is slope.
mark brainliest
= (3g + 5)^2
It is a perfect square trinomial
Answer:
12x^2+9x^2-25 (quadratic equation)
a=12, b=9, c=-25
put this in quadratic formula
Step-by-step explanation: