Given that the graph shows tha the functión at x = 0 is below the y-axis, the constant term of the function has to be negative. This leaves us two possibilities:
y = 8x^2 + 2x - 5 and y = 2x^2 + 8x - 5
To try to discard one of them, let us use the vertex, which is at x = -2.
With y = 8x^2 + 2x - 5, you get y = 8(-2)^2 + 2(-2) - 5 = 32 - 4 - 5 = 23 , which is not the y-coordinate of the vertex of the curve of the graph.
Test the other equation, y = 2x^2 + 8x - 5 = 2(-2)^2 + 8(-2) - 5 = 8 - 16 - 5 = -13, which is exactly the y-coordinate of the function graphed.
Then, the answer is 2x^2 + 8x -5
My guess is that you're doing the Law of Cosines? You have everything you need for that except the angle theta, which is the thing you need to find. It's set up like this: (8)^2 = (10)^2 + (5)^2 -[2(10)(5)cos A] I used A instead of theta. Doing that math, you have: 64 = 100 + 25 -[ 100 cos A]; 64 = 125 - 100 cos A;
-61 = - 100 cos A; -61 / -100 = cos A; .61 = cos A. Now use your inverse function on your calculator to find cos^-1(.61) and that equals 52.4
I cant answer if i dont know what math would you mind telling me what math
THE ANSWER IS -10P.
Step-by-step explanation:
USING BY MULTIPLICATION RULE.
minus × plus = minus
then minus × minus = plus.
so we add the 4p+6p= -10p.
why -10p is come it means THE BIGGER NUMBER SIGN IS MINUS. So it's comes -10p.
<em>HOPE</em><em> </em><em>IT</em><em> </em><em>HELP</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>