Answer:
The car must have a speed of 25 kilometres per hour to stop after moving 7 metres.
Step-by-step explanation:
Let be
, where
is the stopping distance measured in metres and
is the speed measured in kilometres per hour. The second-order polynomial is drawn with the help of a graphing tool and whose outcome is presented below as attachment.
The procedure to find the speed related to the given stopping distance is described below:
1) Construct the graph of
.
2) Add the function
.
3) The point of intersection between both curves contains the speed related to given stopping distance.
In consequence, the car must have a speed of 25 kilometres per hour to stop after moving 7 metres.
Answer:
b hopefully this helps you with work
It would be 2/3 because 2 divided by 3 on a calculator is .6667
9514 1404 393
Answer:
{Segments, Geometric mean}
{PS and QS, RS}
{PS and PQ, PR}
{PQ and QS, QR}
Step-by-step explanation:
The three geometric mean relationships are derived from the similarity of the triangles the similarity proportions can be written 3 ways, each giving rise to one of the geometric mean relations.
short leg : long leg = SP/RS = RS/SQ ⇒ RS² = SP·SQ
short leg : hypotenuse = RP/PQ = PS/RP ⇒ RP² = PS·PQ
long leg : hypotenuse = RQ/QP = QS/RQ ⇒ RQ² = QS·QP
I find it easier to remember when I think of it as <em>the segment from R is equal to the geometric mean of the two segments the other end is connected to</em>.
__
segments PS and QS, gm RS
segments PS and PQ, gm PR
segments PQ and QS, gm QR