Shifting the focus to how the author needs his mother's support at the end of the argument might be considered an example of false causation fallacy.
Explanation:
In case of false causation the causes of the fallacies are incorrectly identified. In this case although one event is related to another event and the events take place at the same time . Although if the events are talking place at the same time but the events are not connected to each other. In case of false fallacy real relationship do not exist between the variables . One of the example of false causation is that whenever I go to the the bed at night for sleep , sun also goes down as well.
"Critical region" redirects here. For the computer science notion of a "critical section", sometimes called a "critical region", see critical section.
A statistical hypothesis is a hypothesis that is testable on the basis of observing a process that is modeled via a set of random variables.[1] A statistical hypothesis test is a method of statistical inference. Commonly, two statistical data sets are compared, or a data set obtained by sampling is compared against a synthetic data set from an idealized model. A hypothesis is proposed for the statistical relationship between the two data sets, and this is compared as an alternative to an idealized null hypothesis that proposes no relationship between two data sets. The comparison is deemed statistically significant if the relationship between the data sets would be an unlikely realization of the null hypothesis according to a threshold probability—the significance level. Hypothesis tests are used in determining what outcomes of a study would lead to a rejection of the null hypothesis for a pre-specified level of significance. The process of distinguishing between the null hypothesis and the alternative hypothesis is aided by identifying two conceptual types of errors (type 1 & type 2), and by specifying parametric limits on e.g. how much type 1 error will be permitted.
An alternative framework for statistical hypothesis testing is to specify a set of statistical models, one for each candidate hypothesis, and then use model selection techniques to choose the most appropriate model.[2] The most common selection techniques are based on either Akaike information criterion or Bayes factor.
Statistical hypothesis testing is sometimes called confirmatory data analysis. It can be contrasted with exploratory data analysis, which may not have pre-specified hypotheses.
Answer:
Because in the great gatsby, Jordan knows Gatsby as a man who tells lies.
Explanation:
In the book, Jordan told Nick that Gatsby was known for lying.