Answer:
Option D. x ≥ -4
Step-by-step explanation:
____________
It’s 42 but Carrier the 2
Answer:
For Lin's answer
Step-by-step explanation:
When you have a triangle, you can flip it along a side and join that side with the original triangle, so in this case the triangle has been flipped along the longest side and that longest side is now common in both triangles. Now since these are the same triangle the area remains the same.
Now the two triangles form a quadrilateral, which we can prove is a parallelogram by finding out that the opposite sides of the parallelogram are equal since the two triangles are the same(congruent), and they are also parallel as the alternate interior angles of quadrilateral are the same. So the quadrilaral is a paralllelogram, therefore the area of a parallelogram is bh which id 7 * 4 = 7*2=28 sq units.
Since we already established that the triangles in the parallelogram are the same, therefore their areas are also the same, and that the area of the parallelogram is 28 sq units, we can say that A(Q)+A(Q)=28 sq units, therefore 2A(Q)=28 sq units, therefore A(Q)=14 sq units, where A(Q), is the area of triangle Q.
Answer:
a) The interval for those who want to go out earlier is between 43.008 and 46.592
b) The interval for those who want to go out later is between 47.9232 and 51.9168
Step-by-step explanation:
Given that:
Sample size (n) =128,
Margin of error (e) = ±4% =
a) The probability of those who wanted to get out earlier (p) = 35% = 0.35
The mean of the distribution (μ) = np = 128 * 0.35 = 44.8
The margin of error = ± 4% of 448 = 0.04 × 44.8 = ± 1.792
The interval = μ ± e = 44.8 ± 1.792 = (43.008, 46.592)
b) The probability of those who wanted to start school get out later (p) = 39% = 0.39
The mean of the distribution (μ) = np = 128 * 0.39 = 49.92
The margin of error = ± 4% of 448 = 0.04 × 49.92 = ± 1.9968
The interval = μ ± e = 44.8 ± 1.792 = (47.9232, 51.9168)
The way for those who want to go out earlier to win if the vote is counted is if those who do not have any opinion vote that they want to go earlier