1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ollegr [7]
3 years ago
13

Help me please!!!!!!​

Mathematics
1 answer:
Vaselesa [24]3 years ago
7 0

Answer:  see both proofs below

<u>Step-by-step explanation:</u>

Use Difference Identity: tan (A - B) = (tan A - tan B)/(1 + tanA · tanB)

Use Unit Circle to evaluate: tan (π/4) = 1

Use Tangent Identity: tanA = (sinA)/(cosA)

Use Half-Angle Identities:

\cos \dfrac{A}{2}=\sqrt{\dfrac{1+\cos A}{2}}\\\\\\\sin \dfrac{A}{2}=\sqrt{\dfrac{1-\cos A}{2}}

<u>Part 1   Proof LHS → Middle</u>

LHS:                                \tan\bigg(\dfrac{\pi}{4}-\dfrac{A}{2}\bigg)

Difference Identity:        \dfrac{\tan (\frac{\pi}{4})-\tan(\frac{A}{2})}{1+\tan(\frac{\pi}{4})\cdot \tan(\frac{A}{2})}

Unit Circle:                      \dfrac{1-\tan(\frac{A}{2})}{1+ \tan(\frac{A}{2})}

\text{Tangent Identity:}\qquad \qquad \dfrac{\frac{\cos\frac{A}{2}-\sin\frac{A}{2}}{\cos\frac{A}{2}}}{\frac{\cos\frac{A}{2}+\sin\frac{A}{2}}{\cos\frac{A}{2}}}

Simplify:                             \dfrac{\cos\frac{A}{2}-\sin\frac{A}{2}}{\cos\frac{A}{2}+\sin\frac{A}{2}}

LHS = Middle:  \dfrac{\cos\frac{A}{2}-\sin\frac{A}{2}}{\cos\frac{A}{2}+\sin\frac{A}{2}}=\dfrac{\cos\frac{A}{2}-\sin\frac{A}{2}}{\cos\frac{A}{2}+\sin\frac{A}{2}}\qquad \checkmark

<u>Part 2   Proof  Middle → RHS</u>

Middle:                                     \dfrac{\cos\frac{A}{2}-\sin\frac{A}{2}}{\cos\frac{A}{2}+\sin\frac{A}{2}}

\text{Half-Angle Identity:}\qquad \qquad \dfrac{\sqrt{\frac{1+\cos A}{2}}-\sqrt{\frac{1-\cos A}{2}}}{\sqrt{\frac{1+\cos A}{2}}+\sqrt{\frac{1-\cos A}{2}}}

Simplify:                               \dfrac{\sqrt{1+\cos A}-\sqrt{1-\cos A}}{\sqrt{1+\cos A}+\sqrt{1-\cos A}}

Rationalize Denominator:  \dfrac{\sqrt{1+\cos A}-\sqrt{1-\cos A}}{\sqrt{1+\cos A}+\sqrt{1-\cos A}}\bigg(\dfrac{\sqrt{1+\cos A}-\sqrt{1-\cos A}}{\sqrt{1+\cos A}-\sqrt{1-\cos A}}\bigg)

                                          =\dfrac{1+\cos A-2\sqrt{1-\cos^2 A}+1-\cos A}{1+\cos A-(1-\cos A)}

Simplify:                                \dfrac{2-2\sqrt{1-\cos^2 A}}{2\cos A}

                                         =\dfrac{2-2\sqrt{sin^2 A}}{2\cos A}

                                         = \dfrac{2-2\sin A}{2\cos A}

Factor:                                   \dfrac{2(1-\sin A)}{2(\cos A)}

Simplify:                               \dfrac{1-\sin A}{\cos A}

Expand:                                \dfrac{1-\sin A}{\cos A}\bigg(\dfrac{1+\sin A}{1+\sin A}\bigg)

                                          =\dfrac{1-\sin^2 A}{\cos A(1+\sin A)}

Simplify:                                 \dfrac{\cos^2 A}{\cos A(1+\sin A)}

                                          =\dfrac{\cos A}{1+\sin A}      

Middle = RHS:   \dfrac{\cos A}{1+\sin A}=\dfrac{\cos A}{1+\sin A}\qquad \checkmark            

                       

You might be interested in
Anthony bought 3 chicken wings for $3.00. What's the unit cost of one wing?
ASHA 777 [7]
Answer; $1
Explanation 3 divided by 3
3 0
3 years ago
Read 2 more answers
What is the area of this figure?<br><br><br> 28 yd²<br><br> 40 yd²<br><br> 52 yd²<br><br> 64 yd²
Lubov Fominskaja [6]

Answer:  A= s^2 <- for a square

A= 1/2*b*h <- for a triangle

A= 4^2= 16

A= 1/2*8*6 (The whole height is 8 yd)

A= 1/2*48

A= 24

24+16= 40 yd^2

"B" is the answer.

I hope this helps!

Step-by-step explanation: A= s^2 <- for a square

A= 1/2*b*h <- for a triangle

A= 4^2= 16

A= 1/2*8*6 (The whole height is 8 yd)

A= 1/2*48

A= 24

24+16= 40 yd^2

"B" is the answer.

I hope this helps!

6 0
3 years ago
I need some help with this.
Alenkasestr [34]

Answer:

b is 16 d is 13

Step-by-step explanation:

ok is a baby girl that can I be happy

7 0
3 years ago
Based on the line plot, how many recipes call for more than 1/4 tsp of salt?
Studentka2010 [4]
It would be 6 haha I just took a test and got it right
5 0
4 years ago
Read 2 more answers
* this is pretty difficult for me , provide details if necessary * // ANSWER ASAP //
fredd [130]

Answer:

A.

Step-by-step explanation:

1 radian = 180/π

So

Multiplying both sides by 25π/18

We'll get,

25π/18 (r) = (180/π)×(25π/18)

= (180×25)/18

= 10×25

= 250 degrees

5 0
4 years ago
Other questions:
  • What's 3 15/44 as a fraction
    10·2 answers
  • HELP!!! will give brainliest!!!! i dont know how to do this
    7·1 answer
  • The sum of the measures of angle 4,7, and _____ is equal to 180
    6·1 answer
  • Answer of question to know what to do the answer
    9·1 answer
  • In a large backyard, there are 4 times as many shrubs as trees. Altogether, there are 40 trees and shrubs. How many trees are in
    13·2 answers
  • The expression \dfrac12bh
    11·1 answer
  • Help please. ASAP<br>i dont get it​
    5·1 answer
  • Which fraction is equal to 3/6<br> HELP!
    7·1 answer
  • How much money should be deposited today in an account that earns 6% compounded monthly so that it will accumulate to $1000000 (
    13·1 answer
  • What is the domain of the function y = l n (StartFraction negative x + 3 Over 2 EndFraction)
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!