P(x) = (x^2)(x - 4)^2(x + 4) + some constant(b)
2025 = (1^2)(1 - 4)^2(1 + 4) + b
2025 = 45 + b
b = 1980
Complete Equation:
p(x) = (x^2)(x - 4)^2(x +4) + 1980
or expanded form
p(x) = x^5 - 4x^4 - 16x^3 + 64x^2 + 1980
Answer:
m∠BAC = 105°
m∠FAB = 75°
Step-by-step explanation:
By using the property of an exterior angle of a triangle,
Measure of an exterior angle is equal to the sum of opposite two angles of a triangle.
From the triangle given in the picture,
m∠ABC + m∠BCA + m∠CAB = 180°
(13x - 3)° = (3x + 2)° + 55°
13x - 3 = 3x + 57
13x - 3x = 57 + 3
10x = 60
x = 6
m∠FAB = (13x - 3)° = 75°
m∠ABC = (3x + 2)° = 20°
Since, ∠BAC and ∠FAB are the linear pair of angles,
m∠BAC + m∠FAB = 180°
m∠BAC + 75° = 180°
m∠BAC = 180° - 75° = 105°
Answer:
(3+d)(9-3d+d^2)
Step-by-step explanation:
a^3 + b^3 = (a+b)(a^2-ab+b^2)
a= 3
b= d
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Differentiate</u>
- [Function] Derivative Rule [Product Rule]:
![\displaystyle f'(x) = \frac{d}{dx}[9x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B9x%5E%7B10%7D%5D%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%209x%5E%7B10%7D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctan%5E%7B-1%7D%28x%29%5D)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle f'(x) = 9 \frac{d}{dx}[x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%209%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5E%7B10%7D%5D%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%209x%5E%7B10%7D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctan%5E%7B-1%7D%28x%29%5D)
- Basic Power Rule:
![\displaystyle f'(x) = 90x^9 \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%2090x%5E9%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%209x%5E%7B10%7D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctan%5E%7B-1%7D%28x%29%5D)
- Arctrig Derivative:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Answer:
B. 33.5
Step-by-step explanation:
V=πr2h
3=π·2^2·8/3≈33.51032