Answer:
El perímetro de la región impresa es 72 cm y su área es 288 cm².
Step-by-step explanation:
1. Tenemos el perímetro de la hoja de papel:
P₁ = 96 cm = 2l₁ + 2a₁ (1)
Como sabemos el margen superior, inferior, izquierdo y derecho podemos encontrar la relación entre el largo y ancho del rectángulo interno (región impresa) con el largo (l) y ancho (a) del rectángulo externo (hoja de papel):
(2)
(3)
El perímetro del rectángulo interno es:
(4)
Introduciendo la ecuación (2) y (3) en (4):
Por lo tanto el perímetro del rectángulo interno (región impresa) es 72 cm.
2. Ahora para encontrar el área rectángulo interno debemos encontrar el largo y ancho del mismo, sabiendo que:
(5)
Introduciendo (5) en (4):



Entonces el área es:

Por lo tanto el área del rectágulo interno (región impresa) es 288 cm².
Espero que te sea de utilidad!
Answer: You bought 7 books and you also bought 4 magazines
Explanation:
x = # of books purchased
y = # of magazines purchased
System of equations:
8x + 5y = 76
x + y = 11
Let’s use elimination in this case, but substitution can also work.
8x + 5y = 76
Multiply the (x + y = 11) by -8
We get:
8x + 5y = 76
-8x - 8y = -88
The xs cancel.
Add like terms.
-3y = -12
Divide by -3 on both sides
y = 4
Now plug in 4 into the (x + y = 11) equation to get x.
x + (4) = 11
Subtract 4 on both sides
x = 7
so ya I don't see it, it must be crazy
35 squared + 35 squared
rad 2450
35 rad 2
Hello there! The answer is point C, which also happens to be answer C.
Our answer is required to be greater than 1.5 on the x-axis, but also less than -2.5 on the y-axis. By viewing the requirements for the x-axis, our only two relevant answers are points A and C. When looking at point A, however, it has a y-value of +4. Meanwhile, point C has a y-value of -3, which is less than -2.5. Therefore, our answer is point C. Hope this helps!