To find the x-intercept, substitute in
0
0
for
y
y
and solve for
x
x
. To find the y-intercept, substitute in
0
0
for
x
x
and solve for
y
y
.
x-intercept(s):
(
22.6
,
0
)
(
22.6
,
0
)
y-intercept(s):
(
0
,
18.8
¯
3
)
Answer:
Margin of error of 0.0485 hours.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
That is z with a pvalue of
, so Z = 1.96.
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.
In this question:

The margin of error is of:



Margin of error of 0.0485 hours.
Let X be the number of burglaries in a week. X follows Poisson distribution with mean of 1.9
We have to find the probability that in a randomly selected week the number of burglaries is at least three.
P(X ≥ 3 ) = P(X =3) + P(X=4) + P(X=5) + ........
= 1 - P(X < 3)
= 1 - [ P(X=2) + P(X=1) + P(X=0)]
The Poisson probability at X=k is given by
P(X=k) = 
Using this formula probability of X=2,1,0 with mean = 1.9 is
P(X=2) = 
P(X=2) = 
P(X=2) = 0.2698
P(X=1) = 
P(X=1) = 
P(X=1) = 0.2841
P(X=0) = 
P(X=0) = 
P(X=0) = 0.1495
The probability that at least three will become
P(X ≥ 3 ) = 1 - [ P(X=2) + P(X=1) + P(X=0)]
= 1 - [0.2698 + 0.2841 + 0.1495]
= 1 - 0.7034
P(X ≥ 3 ) = 0.2966
The probability that in a randomly selected week the number of burglaries is at least three is 0.2966