Answer: 0.34339622641509433962264150943396
Step-by-step explanation: I basically just divided, but if you wanted the rounded version, it is 0.34
Let L and S represent the weights of large and small boxes, respectively. The problem statement gives rise to two equations:
.. 7L +9S = 273
.. 5L +3S = 141
You can solve these equations various ways. Using "elimination", we can multiply the second equation by 3 and subtract the first equation.
.. 3(5L +3S) -(7L +9S) = 3(141) -(273)
.. 8L = 150
.. L = 150/8 = 18.75
Then we can substitute into either equation to find S. Let's use the second one.
.. 5*18.75 +3S = 141
.. S = (141 -93.75)/3 = 15.75
A large box weighs 18.75 kg; a small box weighs 15.75 kg.
Answer:
C, D, and E
Step-by-step explanation:
85-20=65
t>65
This means all the numbers greater than 65.
Do not include 65 because it is not a greater than or equal to symbol.
Hope this helps!
If not, I am sorry.
A regular trapezoid is shown in the picture attached.
We know that:
DC = minor base = 4
AB = major base = 7
AD = BC = lateral sides or legs = 5
Since the two legs have the same length, the trapezoid is isosceles and we can calculate AH by the formula:
AH = (AB - DC) ÷ 2
= (7 - 5) ÷ 2
= 2 ÷ 2
= 1
Now, we can apply the Pythagorean theorem in order to calculate DH:
DH = √(AD² - AH²)
= √(5² - 1²)
= √(25 - 1)
= √24
= 2√6
Last, we have all the information needed in order to calculate the area by the formula:

A = (7 + 5) × 2√6 ÷ 2
= 12√6
The area of the regular trapezoid is
12√6 square units.
Answer:
<em>58,219 < 58,231</em>
Step-by-step explanation:
58,219 is less than 58,231, so the sentence is
58,219 < 58,231