1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xxMikexx [17]
3 years ago
13

What is 9+-234*37^2-38/483

Mathematics
2 answers:
STatiana [176]3 years ago
6 0
37292827 the answer is that
Crank3 years ago
3 0

Answer:

-2.994*10^6

Step-by-step explanation:

You might be interested in
The areas of two similar rectangles are 180 ft.² and 320 ft.². What scale factor applied to the smaller rectangle will give the
grigory [225]
The ratio of areas is the square of the scale factor, so that factor is
  √(320/180) = 4/3
8 0
3 years ago
Lenovo uses the​ zx-81 chip in some of its laptop computers. the prices for the chip during the last 12 months were as​ follows:
Stella [2.4K]
Given the table below of the prices for the Lenovo zx-81 chip during the last 12 months

\begin{tabular}
{|c|c|c|c|}
Month&Price per Chip&Month&Price per Chip\\[1ex]
January&\$1.90&July&\$1.80\\
February&\$1.61&August&\$1.83\\
March&\$1.60&September&\$1.60\\
April&\$1.85&October&\$1.57\\
May&\$1.90&November&\$1.62\\
June&\$1.95&December&\$1.75
\end{tabular}

The forcast for a period F_{t+1} is given by the formular

F_{t+1}=\alpha A_t+(1-\alpha)F_t

where A_t is the actual value for the preceding period and F_t is the forcast for the preceding period.

Part 1A:
Given <span>α ​= 0.1 and the initial forecast for october of ​$1.83, the actual value for october is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha A_{10}+(1-\alpha)F_{10} \\  \\ =0.1(1.57)+(1-0.1)(1.83) \\  \\ =0.157+0.9(1.83)=0.157+1.647 \\  \\ =1.804

Therefore, the foreast for period 11 is $1.80


Part 1B:

</span>Given <span>α ​= 0.1 and the forecast for november of ​$1.80, the actual value for november is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.1(1.62)+(1-0.1)(1.80) \\  \\ &#10;=0.162+0.9(1.80)=0.162+1.62 \\  \\ =1.782

Therefore, the foreast for period 12 is $1.78</span>



Part 2A:

Given <span>α ​= 0.3 and the initial forecast for october of ​$1.76, the actual value for October is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha&#10; A_{10}+(1-\alpha)F_{10} \\  \\ =0.3(1.57)+(1-0.3)(1.76) \\  \\ &#10;=0.471+0.7(1.76)=0.471+1.232 \\  \\ =1.703

Therefore, the foreast for period 11 is $1.70

</span>
<span><span>Part 2B:

</span>Given <span>α ​= 0.3 and the forecast for November of ​$1.70, the actual value for november is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.3(1.62)+(1-0.3)(1.70) \\  \\ &#10;=0.486+0.7(1.70)=0.486+1.19 \\  \\ =1.676

Therefore, the foreast for period 12 is $1.68



</span></span>
<span>Part 3A:

Given <span>α ​= 0.5 and the initial forecast for october of ​$1.72, the actual value for October is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha&#10; A_{10}+(1-\alpha)F_{10} \\  \\ =0.5(1.57)+(1-0.5)(1.72) \\  \\ &#10;=0.785+0.5(1.72)=0.785+0.86 \\  \\ =1.645

Therefore, the forecast for period 11 is $1.65

</span>
<span><span>Part 3B:

</span>Given <span>α ​= 0.5 and the forecast for November of ​$1.65, the actual value for November is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.5(1.62)+(1-0.5)(1.65) \\  \\ &#10;=0.81+0.5(1.65)=0.81+0.825 \\  \\ =1.635

Therefore, the forecast for period 12 is $1.64



Part 4:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span></span></span><span>α = 0.3, we obtained that the forcasted values of october, november and december are: $1.83, $1.80, $1.78

Thus, the mean absolute deviation is given by:

\frac{|1.57-1.83|+|1.62-1.80|+|1.75-1.78|}{3} = \frac{|-0.26|+|-0.18|+|-0.03|}{3}  \\  \\ = \frac{0.26+0.18+0.03}{3} = \frac{0.47}{3} \approx0.16

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.1 of October, November and December is given by: 0.157



</span><span><span>Part 5:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span><span>α = 0.3, we obtained that the forcasted values of october, november and december are: $1.76, $1.70, $1.68

Thus, the mean absolute deviation is given by:

&#10; \frac{|1.57-1.76|+|1.62-1.70|+|1.75-1.68|}{3} = &#10;\frac{|-0.17|+|-0.08|+|-0.07|}{3}  \\  \\ = \frac{0.17+0.08+0.07}{3} = &#10;\frac{0.32}{3} \approx0.107

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.3 of October, November and December is given by: 0.107



</span></span>
<span><span>Part 6:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span><span>α = 0.5, we obtained that the forcasted values of october, november and december are: $1.72, $1.65, $1.64

Thus, the mean absolute deviation is given by:

&#10; \frac{|1.57-1.72|+|1.62-1.65|+|1.75-1.64|}{3} = &#10;\frac{|-0.15|+|-0.03|+|0.11|}{3}  \\  \\ = \frac{0.15+0.03+0.11}{3} = &#10;\frac{29}{3} \approx0.097

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.5 of October, November and December is given by: 0.097</span></span>
5 0
3 years ago
A sample of 10 adult elephants had an average weight of 12,556 pounds. The standard deviation
kirill [66]

Answer:

The 99% confidence interval of the population mean for the weights of adult elephants is between 12,475 pounds and 12,637 pounds.

Step-by-step explanation:

We have the standard deviation for the sample, so we use the t-distribution to solve this question.

The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So

df = 10 - 1 = 9

99% confidence interval

Now, we have to find a value of T, which is found looking at the t table, with 9 degrees of freedom(y-axis) and a confidence level of 1 - \frac{1 - 0.99}{2} = 0.995. So we have T = 3.25

The margin of error is:

M = T*s = 3.25*25 = 81

In which s is the standard deviation of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 12,556 - 81 = 12,475 pounds

The upper end of the interval is the sample mean added to M. So it is 12,556 + 81 = 12,637 pounds.

The 99% confidence interval of the population mean for the weights of adult elephants is between 12,475 pounds and 12,637 pounds.

6 0
3 years ago
The radius of a circle is 2.6 in. Find the circumference <br> to the nearest tenth.
Georgia [21]

Answer:

16.

Step-by-step explanation:

since given the radius and the formula of the circumference of a circle is 2pie*r

5 0
3 years ago
Which order pair is the solution of the system of equations shown?ITS DUE TONIGHT HELP
kap26 [50]

Answer:

Step-by-step explanation:

-x + 5 = 5x - 6

-6x + 5 = -6

-6x = -11

6x = 11

x = 11/6

-11/6 + 30/6= 19/6

(11/6, 19/6)

answer is C

6 0
3 years ago
Read 2 more answers
Other questions:
  • Teresa is 25 years old, and she makes $30,000 per year. If Teresa were to die,
    14·1 answer
  • Shanice has 23 baseball trading cards of star players she agrees to sell them for 16 each how much money will she make from sell
    11·1 answer
  • Mr. Stewart bought a new battery for his car. The battery cost $72. Since batteries are a taxable item, he had to pay a sales ta
    7·1 answer
  • find the exponential model of best fit for the points (-3,5),(1,12),(5,72),(7,137). Explian how you got your answer. Round value
    5·1 answer
  • Help me please!!!<br> i only have 25 mintues until i have to turn it in
    5·1 answer
  • M 2.8 − 4.9 = −7.11
    11·1 answer
  • Please Help! 10 points!
    9·2 answers
  • Answe these two, please show your work
    8·2 answers
  • A house number is displayed on a plaque in the shape of a regular 7-sided polygon. The area of the plaque is 70 squared inches.
    13·1 answer
  • On the first day it was posted online, a music video got 390 views. The number of
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!