Answer:
9x2, 6x3, 1x18
Step-by-step explanation:
9x2=18
6x3=18
1x18=18
Given:
Polynomials
To find:
Monomial of 2nd degree with leading coefficient 3
Solution:
Monomial is an algebraic expression with only one term.
Option A: 
It is not a monomial because it have 2 terms.
It is not true.
Option B:
It is not a monomial because it have 2 terms.
It is not true.
Option C: 
It have one term only. So, it is a monomial.
Degree means highest power. So degree = 2
Leading coefficient means the value before variable.
Leading coefficient = 3
It is true.
Option D: 
It have one term only. So, it is a monomial.
Degree means highest power. So degree = 3
It is not true.
Therefore
is a monomial of 2nd degree with a leading coefficient of 3.
Answer:
{1, (-1±√17)/2}
Step-by-step explanation:
There are formulas for the real and/or complex roots of a cubic, but they are so complicated that they are rarely used. Instead, various other strategies are employed. My favorite is the simplest--let a graphing calculator show you the zeros.
___
Descartes observed that the sign changes in the coefficients can tell you the number of real roots. This expression has two sign changes (+-+), so has 0 or 2 positive real roots. If the odd-degree terms have their signs changed, there is only one sign change (-++), so one negative real root.
It can also be informative to add the coefficients in both cases--as is, and with the odd-degree term signs changed. Here, the sum is zero in the first case, so we know immediately that x=1 is a zero of the expression. That is sufficient to help us reduce the problem to finding the zeros of the remaining quadratic factor.
__
Using synthetic division (or polynomial long division) to factor out x-1 (after removing the common factor of 4), we find the remaining quadratic factor to be x²+x-4.
The zeros of this quadratic factor can be found using the quadratic formula:
a=1, b=1, c=-4
x = (-b±√(b²-4ac))/(2a) = (-1±√1+16)/2
x = (-1 ±√17)2
The zeros are 1 and (-1±√17)/2.
_____
The graph shows the zeros of the expression. It also shows the quadratic after dividing out the factor (x-1). The vertex of that quadratic can be used to find the remaining solutions exactly: -0.5 ± √4.25.
__
The given expression factors as ...
4(x -1)(x² +x -4)
Answer:
(7/2, 1)
Step-by-step explanation:
use the midpoint formula
Answer:
So 3x = x +8 is your equation
We adjust the equation to isolate the x and we end up with 2x = 8
We have to isolate the x even more to turn it into x = 4.
So our final answer is x = 4