1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
neonofarm [45]
3 years ago
10

The ice cream shop has 80 different possible sundaes consisting of 1 flavor of ice cream, 1 syrup, and 1 candy topping. If the i

ce cream parlor has 5 different syrups and 4 different candy toppings, then how many flavors of ice cream does it have?
Mathematics
1 answer:
adoni [48]3 years ago
4 0

<span>4: 80*5*4 </span>
<span>= 1600 diff ice creams flavors. yum. 

</span>
You might be interested in
HELP PLEASE<br> Use elimination to solve the system of equations<br> 2x + 3y = 9 <br> x + 5y = 8
ikadub [295]

Answer:

y=5/7   x=31/7

Step-by-step explanation:

Make the x values the opposite of each other:

-2(x+5y=8)

-2x-10y=-16

2x+3y=9

Combine like terms and solve for y:

-7y=-5

y=5/7

Plug y in to find x.

x+5(5/7)=8

x+25/7=8

56/7-25/7=x

x=31/7

5 0
2 years ago
Joyce is trying to solve the equation y = x2 − 8x + 7 using the quadratic formula. She has made an error in one of the steps bel
kobusy [5.1K]

Answer:

x = 1 , 7

Step-by-step explanation:

Solution:-

- The given equation is as follows:

                          y = x^2 - 8x + 7

- We can solve the above equation by either making factors or by using Quadratic formula.

Factor Approach:

- Using the constant "7" at the end of the quadratic equation we will determine two integer multiples such that their additions/subtraction results in "-8".

- So the only factor of "7" are:

                        7 x 1 = 7

                       -7 x -1 = 7

- We see that addition/subtraction of first (7 , 1 ) does not results in "-8", However, the sum of ( -1 , -7 ) = -1 - 7 = -8. So the correct factors are ( -1 , -7 ). So we replace "-8x" with our factors "-1x" and "-7x":

                       x^2 -x -7x + 7 = 0

- Take common multiples out of pair of two terms:

                        x*(x-1) -7*(x-1) = 0

                        (x-7)*(x-1) = 0

- So we equate each term in bracket with "0" and evaluate the values of x:

                        (x-7) = 0  , x = 7

                        (x-1) = 0   , x = 1

- So the solution to the quadratic equation is:

                        x = 1 , 7

               

4 0
3 years ago
Can u answer these for me with the work shown
babymother [125]

Answer:

\frac{x^3 + 2x^2 -9x-18}{x^3-x^2-6x}= \frac{(x+3)}{x}

\frac{3x^2 - 5x - 2}{x^3 - 2x^2} = \frac{3x + 1}{x^2}

\frac{6 - 2x}{x^2 - 9} * \frac{15 + 5x}{4x}=-\frac{5}{2x}

\frac{x^2 -6x + 9}{5x - 15} / \frac{5}{3-x} = \frac{-(x-3)^2}{25}

\frac{x^3 - x^2 -x + 1}{x^2 - 2x+1}= x +1

\frac{9x^2 + 3x}{6x^2} = \frac{3x + 1}{2x}

\frac{x^2-3x+2}{4x} * \frac{12x^2}{x^2 - 2x} / \frac{x - 1}{x} = 3x

Step-by-step explanation:

Required

Simplify

Solving (1):

\frac{x^3 + 2x^2 -9x-18}{x^3-x^2-6x}

Factorize the numerator and the denominator

\frac{x^2(x + 2) -9(x+2)}{x(x^2-x-6)}

Factor out x+2 at the numerator

\frac{(x^2 -9)(x+2)}{x(x^2-x-6)}

Express x^2 - 9 as difference of two squares

\frac{(x^2 -3^2)(x+2)}{x(x^2-x-6)}

\frac{(x -3)(x+3)(x+2)}{x(x^2-x-6)}

Expand the denominator

\frac{(x -3)(x+3)(x+2)}{x(x^2-3x+2x-6)}

Factorize

\frac{(x -3)(x+3)(x+2)}{x(x(x-3)+2(x-3))}

\frac{(x -3)(x+3)(x+2)}{x(x+2)(x-3)}

Cancel out same factors

\frac{(x+3)}{x}

Hence:

\frac{x^3 + 2x^2 -9x-18}{x^3-x^2-6x}= \frac{(x+3)}{x}

Solving (2):

\frac{3x^2 - 5x - 2}{x^3 - 2x^2}

Expand the numerator and factorize the denominator

\frac{3x^2 - 6x + x - 2}{x^2(x- 2)}

Factorize the numerator

\frac{3x(x - 2) + 1(x - 2)}{x^2(x- 2)}

Factor out x - 2

\frac{(3x + 1)(x - 2)}{x^2(x- 2)}

Cancel out x - 2

\frac{3x + 1}{x^2}

Hence:

\frac{3x^2 - 5x - 2}{x^3 - 2x^2} = \frac{3x + 1}{x^2}

Solving (3):

\frac{6 - 2x}{x^2 - 9} * \frac{15 + 5x}{4x}

Express x^2 - 9 as difference of two squares

\frac{6 - 2x}{x^2 - 3^2} * \frac{15 + 5x}{4x}

Factorize all:

\frac{2(3 - x)}{(x- 3)(x+3)} * \frac{5(3 + x)}{2(2x)}

Cancel out x + 3 and 3 + x

\frac{2(3 - x)}{(x- 3)} * \frac{5}{2(2x)}

\frac{3 - x}{x- 3} * \frac{5}{2x}

Express 3 - x as -(x - 3)

\frac{-(x-3)}{x- 3} * \frac{5}{2x}\\

-1 * \frac{5}{2x}

-\frac{5}{2x}

Hence:

\frac{6 - 2x}{x^2 - 9} * \frac{15 + 5x}{4x}=-\frac{5}{2x}

Solving (4):

\frac{x^2 -6x + 9}{5x - 15} / \frac{5}{3-x}

Expand x^2 - 6x + 9 and factorize 5x - 15

\frac{x^2 -3x -3x+ 9}{5(x - 3)} / \frac{5}{3-x}

Factorize

\frac{x(x -3) -3(x-3)}{5(x - 3)} / \frac{5}{3-x}

\frac{(x -3)(x-3)}{5(x - 3)} / \frac{5}{3-x}

Cancel out x - 3

\frac{(x -3)}{5} / \frac{5}{3-x}

Change / to *

\frac{(x -3)}{5} * \frac{3-x}{5}

Express 3 - x as -(x - 3)

\frac{(x -3)}{5} * \frac{-(x-3)}{5}

\frac{-(x-3)(x -3)}{5*5}

\frac{-(x-3)^2}{25}

Hence:

\frac{x^2 -6x + 9}{5x - 15} / \frac{5}{3-x} = \frac{-(x-3)^2}{25}

Solving (5):

\frac{x^3 - x^2 -x + 1}{x^2 - 2x+1}

Factorize the numerator and expand the denominator

\frac{x^2(x - 1) -1(x - 1)}{x^2 - x-x+1}

Factor out x - 1 at the numerator and factorize the denominator

\frac{(x^2 - 1)(x - 1)}{x(x -1)- 1(x-1)}

Express x^2 - 1 as difference of two squares and factor out x - 1 at the denominator

\frac{(x +1)(x-1)(x - 1)}{(x -1)(x-1)}

x +1

Hence:

\frac{x^3 - x^2 -x + 1}{x^2 - 2x+1}= x +1

Solving (6):

\frac{9x^2 + 3x}{6x^2}

Factorize:

\frac{3x(3x + 1)}{3x(2x)}

Divide by 3x

\frac{3x + 1}{2x}

Hence:

\frac{9x^2 + 3x}{6x^2} = \frac{3x + 1}{2x}

Solving (7):

\frac{x^2-3x+2}{4x} * \frac{12x^2}{x^2 - 2x} / \frac{x - 1}{x}

Change / to *

\frac{x^2-3x+2}{4x} * \frac{12x^2}{x^2 - 2x} * \frac{x}{x-1}

Expand

\frac{x^2-2x-x+2}{4x} * \frac{12x^2}{x^2 - 2x} * \frac{x}{x-1}

Factorize

\frac{x(x-2)-1(x-2)}{4x} * \frac{12x^2}{x(x - 2)} * \frac{x}{x-1}

\frac{(x-1)(x-2)}{4x} * \frac{12x^2}{x(x - 2)} * \frac{x}{x-1}

Cancel out x - 2 and x - 1

\frac{1}{4x} * \frac{12x^2}{x} * \frac{x}{1}

Cancel out x

\frac{1}{4x} * \frac{12x^2}{1} * \frac{1}{1}

\frac{12x^2}{4x}

3x

Hence:

\frac{x^2-3x+2}{4x} * \frac{12x^2}{x^2 - 2x} / \frac{x - 1}{x} = 3x

8 0
2 years ago
Find the following expression by multiplying.<br><br> (a + b)^2
Hatshy [7]
You multiply it together like (a+b)(a+b)
the answer would be a^2 + 2ab + b^2
4 0
3 years ago
Read 2 more answers
1: x - (-3) is the same as x + (-3).
lyudmila [28]
1. False    2.True       3.20    4.13     5.-23       6. True      7. should be false because domain is a range of values and y- value is just one.       8.True
8 0
2 years ago
Read 2 more answers
Other questions:
  • I need to finish this by tmr morning or my parents is gettin called lol
    15·1 answer
  • Is or is not -4 equal to 4<br> pls pls help me
    13·2 answers
  • What is the slope of a line that passes (-4,2) and (6,8)?
    14·1 answer
  • which equation shows the point slope form of the line that passes through (3,2) and has a slope of 1/3
    10·1 answer
  • Simplify x raised ^ 5 x - 2​
    9·1 answer
  • What is the value of x?
    6·1 answer
  • Marty and Ethan both wrote a function, but in different
    9·1 answer
  • U(x)= x^2+1<br> w(x)= √x+6<br><br> Find the following.<br> (u o w) (3)=__<br> (w o u) (3)=__
    12·1 answer
  • Cody and Brad bought pizza for the class party. Cody bought 12 pizzas for $15 each.
    15·2 answers
  • A small box in the shape of a cube for packaging has a volume of 64 cubic inches.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!