Answer:
b
Step-by-step explanation:
sorry if i am wrong
Answer:
"Vx: if x is a valid argument with true premises then x has a true conclusion"
In a symbol form
Vx ( P(x) ⇒ 2(x) )
Step-by-step explanation:
The Following statement in the form ∀x ______, if _______ then _______ is a valid argument and this because any valid argument with "true premises" has a "true conclusion" as well
we will rewrite this statement in a universal condition statement form
assume x is a valid argument with true premises
then the following holds true
p(x) : x is a valid argument with true premises
q(x) : x has true conclusion
applying universal conditional statement
"Vx, if x is a valid argument with true premises then x has a true conclusion"
In a symbol form
Vx ( P(x) ⇒ 2(x) )
The graph of the two given system of inequalities y > 2x - 5
y < -3x is; Attached below
<h3>How to graph Inequalities?</h3>
We are given two inequalities;
y > 2x - 5
y < -3x
The graph that represents the 2 inequalities has been attached and from the graph, we see that;
- The slope of the dotted line is negative
- The x- intercept of the dotted line is the point (0,0)
- The y- intercept of the dotted line is the point (0,0)
The solution of the system of inequalities is the shaded pink area between the two dotted lines.
Read more about Inequality Graphs at; brainly.com/question/13635292
#SPJ1
<h3>
<u>Correct Question :- </u></h3>


(a) 0
(b) 8000
(c) 8080
(d) 16000

Given that

We know


And


Also, given that


and

Now, Consider





![\sf \: = 20\bigg[ {a}^{2} + {b}^{2} + {c}^{2} + {d}^{2}\bigg]](https://tex.z-dn.net/?f=%20%5Csf%20%5C%3A%20%20%3D%2020%5Cbigg%5B%20%7Ba%7D%5E%7B2%7D%20%2B%20%20%7Bb%7D%5E%7B2%7D%20%2B%20%7Bc%7D%5E%7B2%7D%20%2B%20%20%7Bd%7D%5E%7B2%7D%5Cbigg%5D)
We know,

So, using this, we get
![\sf \: = 20\bigg[ {(a + b)}^{2} - 2ab + {(c + d)}^{2} - 2cd\bigg]](https://tex.z-dn.net/?f=%20%5Csf%20%5C%3A%20%20%3D%2020%5Cbigg%5B%20%7B%28a%20%2B%20b%29%7D%5E%7B2%7D%20-%202ab%20%2B%20%20%7B%28c%20%2B%20d%29%7D%5E%7B2%7D%20-%202cd%5Cbigg%5D)
![\sf \: = 20\bigg[ {( - 20)}^{2} + 2(2020) + {(20)}^{2} - 2(2020)\bigg]](https://tex.z-dn.net/?f=%20%5Csf%20%5C%3A%20%20%3D%2020%5Cbigg%5B%20%7B%28%20-%2020%29%7D%5E%7B2%7D%20%2B%20%202%282020%29%20%2B%20%20%7B%2820%29%7D%5E%7B2%7D%20-%202%282020%29%5Cbigg%5D)
![\sf \: = 20\bigg[ 400 + 400\bigg]](https://tex.z-dn.net/?f=%20%5Csf%20%5C%3A%20%20%3D%2020%5Cbigg%5B%20400%20%2B%20400%5Cbigg%5D)
![\sf \: = 20\bigg[ 800\bigg]](https://tex.z-dn.net/?f=%20%5Csf%20%5C%3A%20%20%3D%2020%5Cbigg%5B%20800%5Cbigg%5D)

Hence,

<em>So, option (d) is correct.</em>