Answer:
![P(X>1)= 1-P(X \leq 1)= 1- [P(X=0) +P(X=1)]](https://tex.z-dn.net/?f=%20P%28X%3E1%29%3D%201-P%28X%20%5Cleq%201%29%3D%201-%20%5BP%28X%3D0%29%20%2BP%28X%3D1%29%5D)
And if we use the probability mass function we got:
And replacing we got:
![P(X>1) =1- [0.0256 +0.1536]= 0.8208](https://tex.z-dn.net/?f=%20P%28X%3E1%29%20%3D1-%20%5B0.0256%20%2B0.1536%5D%3D%200.8208)
Step-by-step explanation:
Let X the random variable of interest, on this case we now that:
The probability mass function for the Binomial distribution is given as:
Where (nCx) means combinatory and it's given by this formula:
We want to find the following probability:

And for this case we can use the complement rule and we got:
![P(X>1)= 1-P(X \leq 1)= 1- [P(X=0) +P(X=1)]](https://tex.z-dn.net/?f=%20P%28X%3E1%29%3D%201-P%28X%20%5Cleq%201%29%3D%201-%20%5BP%28X%3D0%29%20%2BP%28X%3D1%29%5D)
And if we use the probability mass function we got:
And replacing we got:
![P(X>1) =1- [0.0256 +0.1536]= 0.8208](https://tex.z-dn.net/?f=%20P%28X%3E1%29%20%3D1-%20%5B0.0256%20%2B0.1536%5D%3D%200.8208)