(a) When f is increasing the derivative of f is positive.
f'(x) = 15x^4 - 15x^2 > 0
15x^2(x^2 - 1)> 0
x^2 - 1 > 0 (The inequality doesn't flip sign since x^2 is positive)
x^2 > 1
Then f is increasing when x < -1 and x > 1.
(b) The f is concave upward when f''(x) > 0.
f''(x) = 60x^3 - 30x > 0
30x(2x^2 - 1) > 0
x(2x^2 - 1) > 0
x(x^2 - 1/2) > 0
x(x - 1/sqrt(2))(x + 1/sqrt(2)) > 0
There are four regions here. We will check if f''(x) > 0.
x < -1/sqrt(2): f''(-1) = -30 < 0
-1/sqrt(2) < x < 0: f''(-0.5) = 7.5 > 0
0 < x < 1/sqrt(2): f''(0.5) = -7.5 < 0
x > 1/sqrt(2): f''(1) = 30 > 0
Thus, f''(x) > 0 at -1/sqrt(2) < x < 0 and x > 1/sqrt(2).
Therefore, f is concave upward at -1/sqrt(2) < x < 0 and x > 1/sqrt(2).
(c) The horizontal tangents of f are at the points where f'(x) = 0
15x^2(x^2 - 1) = 0
x^2 = 1
x = -1 or x = 1
f(-1) = 3(-1)^5 - 5(-1)^3 + 2 = 4
f(1) = 3(1)^5 - 5(1)^3 + 2 = 0
Therefore, the tangent lines are y = 4 and y = 0.
<u>Answer</u>
3×(2×5)
<u>Explanation</u>
Multiplication of numbers is associative. For example,
(a×b)×c = a×(b×c)
This is also called grouping. We multiply more than 2 numbers by grouping.
For the equation given above, (3x2)x5, it can also be grouped as 3×(2×5).
Answer:
approximate 23.590 feet
Step-by-step explanation:
tan 65° = x / 11 = 2.145
x = 11 x 2.145 = 23.595
Answer:
1,2
Step-by-step explanation:
R is 2 to the left and 1 up from the origin. If you rotate that 90 degrees its 2 up and 1 to the right.
Hole you Understand